INSCRIPTION AU FORUM ALARME cliquez ici
0 Membres et 1 Invité sur ce sujet
18 décembre 2014Le mécanisme de déclenchement de la récupération après une lésion de la moelle épinière a été découvertAprès une lésion incomplète de la moelle épinière, le corps peut recouvrer une partie des fonctions motrices de base. Les fuseaux neuromusculaires et les circuits sensoriels associés à la moelle épinière peuvent promouvoir la création de nouvelles connexions neuronales après une blessure. Ce mécanisme derrière le processus de récupération motrice a été élucidé par le groupe de recherche du Prof. Silvia Arber au Biozentrum de l'Université de Bâle et de l'Institut Friedrich Miescher pour la recherche biomédicale. Leurs conclusions peuvent contribuer à la conception de nouvelles stratégies pour le traitement des blessures de la moelle épinière et ont été publiés dans la revue Cell.Les lésions de la moelle épinière conduisent souvent à des troubles chroniques de la motricité. Cependant, les patients avec une lésion incomplète de la moelle épinière peuvent partiellement retrouver leur capacité motrice dans certaines conditions. On pense que le tissu nerveux qui reste indemne dans la moelle épinière fournit un substrat pour former de nouveaux circuits de pontage de la lésion. Comment cette formation de nouvelles connexions est déclenchée est restée inconnue jusqu'à présent.En collaboration avec le groupe de recherche du professeur Grégoire Courtine à l'EPFL à Lausanne, l'équipe du Prof. Silvia Arber au Biozentrum de l'Université de Bâle et de l'Institut Friedrich Miescher pour la recherche biomédicale (FMI) a démontré dans un modèle de souris pourquoi les membres paralysés peuvent bouger à nouveau après une lésion incomplète de la moelle épinière : Un canal de rétroaction sensorielle spécifique relié à des capteurs dans les muscles - dits fuseaux neuromusculaires - favorise la récupération fonctionnelle des circuits neuronaux endommagés dans la moelle épinière.La rétroaction sensorielle du fuseau neuromusculaire fournit le signal de déclenchement pour la récupérationLa rétroaction sensorielle qui active le mouvement du membre fait une boucle du muscle à la moelle épinière. Ce canal de rétroaction spécifique favorise le processus de réparation du réseau neurologique endommagé après une lésion. En conséquence, la fonction moteurice peut être restaurée. "Les rétroactions sensorielles qui bouclent les fuseaux neuromusculaires sont donc un facteur clé dans le processus de récupération", explique Silvia Arber. Après une lésion de la moelle épinière, ces impulsions nerveuses continuent à fournir des informations au système nerveux central - même si les fonctions de transmission des informations entre le cerveau et la moelle épinière ne fonctionnent plus."Un déclencheur important pour le processus de récupération est l'information transmise à partir du muscle jusqu'au système nerveux central et non seulement l'information de haut en bas que le cerveau envoie vers les muscles", explique le chercheur Aya Takeoka. En outre, les chercheurs ont démontré que seule la fonctionnalité locomotrice de base pourrait être rétablie spontanément après une lésion. `Les traitements doivent commencer par l'activation des fuseaux neuromusculairesL'étude suggère que l'activation des fuseaux neuromusculaires est essentielle pour promouvoir le processus de récupération des réseaux neuronaux endommagés après une lésion de la moelle épinière. Ainsi, les approches thérapeutiques devraient viser à mobiliser intensivement les muscles, même passivement après une lésion. Plus les muscles sont intensément utilisés dans le processus de mouvement, plus les circuits de rétroaction des muscles sont stimulés. En appliquant ce principe, la réparation des circuits neuronaux et la récupération fonctionnelle motrice auront les meilleures chances de réussir.=========================== :arrow: TEXTE ORIGINAL EN ANGLAIS ===========================December 18, 2014Trigger mechanism for recovery after spinal cord injury revealedAfter an incomplete spinal cord injury, the body can partially recover basic motor function. So-called muscle spindles and associated sensory circuits back to the spinal cord promote the establishment of novel neuronal connections after injury. This circuit-level mechanism behind the process of motor recovery was elucidated by Prof. Silvia Arber's research group at the Biozentrum, University of Basel and the Friedrich Miescher Institute for Biomedical Research. Their findings may contribute to designing novel strategies for treatment after spinal cord injuries and have now been published in the journal Cell. Spinal cord injuries often lead to chronically impaired motor function. However, patients with incomplete spinal cord injury can partially regain their basic motor ability under certain circumstances. It is believed that remaining uninjured spinal cord tissue provides a substrate to form new circuits bridging the injury. How this formation of new connections is triggered and promoted has remained unclear until now.In collaboration with Prof. Grégoire Courtine's research group at the EPFL in Lausanne, the team of Prof. Silvia Arber at the Biozentrum at the University of Basel and the Friedrich Miescher Institute for Biomedical Research (FMI) has demonstrated in a mouse model why paralyzed limbs can move again after incomplete spinal cord injuries: A specific sensory feedback channel connected to sensors embedded within the muscles - so-called muscle spindles - promotes the functional recovery of the damaged neuronal circuits in the spinal cord.Muscle spindle sensory feedback provides trigger signal for recoveryLimb movement activates sensory feedback loops from the muscle to the spinal cord. This specific feedback channel promotes the repair process of the damaged spinal network after injury. As a result, basic motor function can be restored. "The sensory feedback loops from muscle spindles are therefore a key factor in the recovery process," says Silvia Arber. After spinal cord injury, these nerve impulses keep providing information to the central nervous system - even when the transmission of information from the brain to the spinal cord no longer functions."An important trigger for the recovery process is the information conveyed from the muscle to the central nervous system and not only the top-down information the brain sends towards muscles," explains the first author Aya Takeoka. In addition, the researchers demonstrated that only basic locomotor functionality could be restored spontaneously after an injury. Fine locomotor task performance tested, however, remained permanently lost.Treatments must start with activation of muscle spindlesThe study suggests that activation of muscle spindles is essential to promote the recovery process of damaged neuronal networks after spinal cord injury. Thus, therapeutic approaches should aim to extensively use the muscles, even if passively after an injury. The more intensely muscles are used in the movement process, the more muscle spindle feedback circuits are stimulated. By applying this principle, the repair of neuronal circuits and the accompanying recovery of basic motor skills will have the best chances of succeeding.Source : http://medicalxpress.com/news/2014-12-trigger-mechanism-recovery-spinal-cord.html
Merci Arnaud :noel: :ok:
donc l'erreur est dans l'article de l'IRME.c'est bien de lire tout ça et de ce dire qu'on y à un peu, tout petit peu participé, que vous avez fait le bon choix
24-Sep-2014Du rat à l'homme: projet NEUWalk près des essais cliniquesLausanne, Suisse. Des chercheurs de l'EPFL ont découvert comment contrôler les membres d'un rat complètement paralysé en temps réel pour l'aider à marcher. Leurs résultats sont publiés aujourd'hui dans la revue Science Translational Medicine.S'appuyant sur les travaux antérieurs chez le rat, cette nouvelle avancée fait partie d'un traitement plus général qui pourrait un jour être mis en œuvre dans les programmes de réadaptation pour les personnes atteintes de lésions de la moelle épinière, en cours d'élaboration dans un projet européen appelé NEUWalk. Les essais cliniques pourraient commencer dès l'été prochain en utilisant la nouvelle plate-forme de Gait au Centre Hospitalier Universitaire Vaudois).Comment ça marcheLe corps humain a besoin d'électricité pour fonctionner. La sortie électrique du cerveau humain, par exemple, est d'environ 30 watts. Lorsque les circuits du système nerveux sont endommagés, la transmission des signaux électriques est réduite, ce qui conduit souvent à des troubles neurologiques comme la paralysie.La stimulation électrique du système nerveux est connue pour aider à soulager ces troubles neurologiques à de nombreux niveaux. La stimulation cérébrale profonde est utilisée pour traiter des tremblements associés à la maladie de Parkinson, par exemple. Les signaux électriques peuvent être conçus pour stimuler les nerfs afin de restaurer un sens du toucher dans le membre manquant d'amputés. Et la stimulation électrique de la moelle épinière peut restaurer le contrôle des mouvements chez les blessés de la moelle épinière.Mais des signaux électriques peuvent-ils être conçus pour aider un paraplégique à marcher naturellement ? La réponse est oui, pour les rats au moins."Nous avons le contrôle complet des membres postérieurs du rat", explique Grégoire Courtine neuroscientifique à l'EPFL. "Le rat n'a pas la maîtrise de ses membres, mais la moelle épinière sectionnée peut être réactivé et stimulé pour effectuer une marche naturelle. Nous pouvons contrôler en temps réel la manière dont le rat va de l'avant et à quelle hauteur il soulève ses jambes."Les scientifiques ont étudié des rats dont la moelle épinière a été complètement sectionnée au milieu dos, de sorte que les signaux du cerveau sont incapables d'atteindre la moelle épinière inférieure. C'est là que des électrodes souples ont été implantés chirurgicalement. L'envoi d'un courant électrique à travers les électrodes a stimulé la moelle épinière.Ils ont réalisé qu'il y avait une relation directe entre la capacité du rat à se lever sur ses membres et la fréquence de la stimulation électrique. Sur cette base et une surveillance attentive des habitudes de marche du rat - sa démarche - les chercheurs ont spécialement conçus la stimulation électrique pour adapter la foulée du rat en prévision des obstacles à venir, comme des barrières ou des escaliers."Des découvertes scientifiques simples sur la façon dont fonctionne le système nerveux peuvent être exploités pour développer des technologies de neuroprothèses plus efficaces", explique le co-auteur Silvestro Micera. "Nous pensons que cette technologie pourrait un jour améliorer de manière significative la qualité de vie des personnes avec des troubles neurologiques."Vers des essais cliniques utilisant la plate-forme de la marche au CHUVLa stimulation électrique rapportée dans cette étude sera testé chez des patients atteints de lésions de la moelle épinière incomplète dans une étude clinique qui commencera dès l'été prochain, à l'aide d'une nouvelle plate-forme de la marche.Conçu par l'équipe de Courtine, la plate-forme de la marche est faite d'équipements sur mesure comme un tapis roulant et un système de soutien, ainsi que 14 caméras infrarouges qui détectent des marqueurs réfléchissants sur le corps du patient et deux caméras vidéo, qui génèrent des quantités importantes d'informations sur la jambe et le mouvement du corps. Cette information peut être entièrement synchronisée pour un suivi complet et un réglage fin de l'équipement afin d'obtenir une assistance intelligente et adaptative pour la stimulation électrique de la moelle épinière du patient.La plate-forme de la marche se trouve dans une salle de 100 m2 fourni par le CHUV. L'hôpital dispose déjà d'un centre de réadaptation dédiée à la recherche translationnelle, notamment pour les pathologies orthopédiques et neurologiques."La plate-forme de la marche n'est pas un centre de réadaptation", explique Courtine. "C'est un laboratoire de recherche où nous serons en mesure d'étudier et de développer de nouvelles thérapies utilisant une technologie très spécialisée en étroite collaboration avec des experts médicaux ici au CHUV, comme les physiothérapeutes et les médecins."=========================== :arrow: TEXTE ORIGINAL EN ANGLAIS ===========================DATE: 24-Sep-2014From rats to humans: Project NEUWalk closer to clinical trialsLausanne, Switzerland. EPFL scientists have discovered how to control the limbs of a completely paralyzed rat in real time to help it walk again. Their results are published today in Science Translational Medicine.Building on earlier work in rats, this new breakthrough is part of a more general therapy that could one day be implemented in rehabilitation programs for people with spinal cord injury, currently being developed in a European project called NEUWalk. Clinical trials could start as early as next summer using the new Gait Platform now assembled at the CHUV (Lausanne University Hospital).How it worksThe human body needs electricity to function. The electrical output of the human brain, for instance, is about 30 watts. When the circuitry of the nervous system is damaged, the transmission of electrical signals is impaired, often leading to devastating neurological disorders like paralysis.Electrical stimulation of the nervous system is known to help relieve these neurological disorders at many levels. Deep brain stimulation is used to treat tremors related to Parkinson's disease, for example. Electrical signals can be engineered to stimulate nerves to restore a sense of touch in the missing limb of amputees. And electrical stimulation of the spinal cord can restore movement control in spinal cord injury.But can electrical signals be engineered to help a paraplegic walk naturally? The answer is yes, for rats at least."We have complete control of the rat's hind legs," says EPFL neuroscientist Grégoire Courtine. "The rat has no voluntary control of its limbs, but the severed spinal cord can be reactivated and stimulated to perform natural walking. We can control in real-time how the rat moves forward and how high it lifts its legs."The scientists studied rats whose spinal cords were completely severed in the middle-back, so signals from the brain were unable to reach the lower spinal cord. That's where flexible electrodes were surgically implanted. Sending electric current through the electrodes stimulated the spinal cord.They realized that there was a direct relationship between how high the rat lifted its limbs and the frequency of the electrical stimulation. Based on this and careful monitoring of the rat's walking patterns – its gait – the researchers specially designed the electrical stimulation to adapt the rat's stride in anticipation of upcoming obstacles, like barriers or stairs."Simple scientific discoveries about how the nervous system works can be exploited to develop more effective neuroprosthetic technologies," says co-author and neuroengineer Silvestro Micera. "We believe that this technology could one day significantly improve the quality of life of people confronted with neurological disorders."Taking this idea a step further, Courtine and Micera together with colleagues from EPFL's Center for Neuroprosthetics are also exploring the possibility of decoding signals directly from the brain about leg movement and using this information to stimulate the spinal cord.Towards clinical trials using the Gait Platform at the CHUVThe electrical stimulation reported in this study will be tested in patients with incomplete spinal cord injury in a clinical study that may start as early as next summer, using a new Gait Platform that brings together innovative monitoring and rehabilitation technology.Designed by Courtine's team, the Gait Platform consists of custom-made equipment like a treadmill and an overground support system, as well as 14 infrared cameras that detect reflective markers on the patient's body and two video cameras, all of which generate extensive amounts of information about leg and body movement. This information can be fully synchronized for complete monitoring and fine-tuning of the equipment in order to achieve intelligent assistance and adaptive electrical spinal cord stimulation of the patient.The Gait Platform is housed in a 100 square meter room provided by the CHUV. The hospital already has a rehabilitation center dedicated to translational research, notably for orthopedic and neurological pathologies."The Gait Platform is not a rehabilitation center," says Courtine. "It is a research laboratory where we will be able to study and develop new therapies using very specialized technology in close collaboration with medical experts here at the CHUV, like physiotherapists and doctors."Source : http://www.eurekalert.org/pub_releases/2014-09/epfd-frt092114.php