INSCRIPTION AU FORUM ALARME cliquez ici
0 Membres et 2 Invités sur ce sujet
donc l'erreur est dans l'article de l'IRME.c'est bien de lire tout ça et de ce dire qu'on y à un peu, tout petit peu participé, que vous avez fait le bon choix
24-Sep-2014Du rat à l'homme: projet NEUWalk près des essais cliniquesLausanne, Suisse. Des chercheurs de l'EPFL ont découvert comment contrôler les membres d'un rat complètement paralysé en temps réel pour l'aider à marcher. Leurs résultats sont publiés aujourd'hui dans la revue Science Translational Medicine.S'appuyant sur les travaux antérieurs chez le rat, cette nouvelle avancée fait partie d'un traitement plus général qui pourrait un jour être mis en œuvre dans les programmes de réadaptation pour les personnes atteintes de lésions de la moelle épinière, en cours d'élaboration dans un projet européen appelé NEUWalk. Les essais cliniques pourraient commencer dès l'été prochain en utilisant la nouvelle plate-forme de Gait au Centre Hospitalier Universitaire Vaudois).Comment ça marcheLe corps humain a besoin d'électricité pour fonctionner. La sortie électrique du cerveau humain, par exemple, est d'environ 30 watts. Lorsque les circuits du système nerveux sont endommagés, la transmission des signaux électriques est réduite, ce qui conduit souvent à des troubles neurologiques comme la paralysie.La stimulation électrique du système nerveux est connue pour aider à soulager ces troubles neurologiques à de nombreux niveaux. La stimulation cérébrale profonde est utilisée pour traiter des tremblements associés à la maladie de Parkinson, par exemple. Les signaux électriques peuvent être conçus pour stimuler les nerfs afin de restaurer un sens du toucher dans le membre manquant d'amputés. Et la stimulation électrique de la moelle épinière peut restaurer le contrôle des mouvements chez les blessés de la moelle épinière.Mais des signaux électriques peuvent-ils être conçus pour aider un paraplégique à marcher naturellement ? La réponse est oui, pour les rats au moins."Nous avons le contrôle complet des membres postérieurs du rat", explique Grégoire Courtine neuroscientifique à l'EPFL. "Le rat n'a pas la maîtrise de ses membres, mais la moelle épinière sectionnée peut être réactivé et stimulé pour effectuer une marche naturelle. Nous pouvons contrôler en temps réel la manière dont le rat va de l'avant et à quelle hauteur il soulève ses jambes."Les scientifiques ont étudié des rats dont la moelle épinière a été complètement sectionnée au milieu dos, de sorte que les signaux du cerveau sont incapables d'atteindre la moelle épinière inférieure. C'est là que des électrodes souples ont été implantés chirurgicalement. L'envoi d'un courant électrique à travers les électrodes a stimulé la moelle épinière.Ils ont réalisé qu'il y avait une relation directe entre la capacité du rat à se lever sur ses membres et la fréquence de la stimulation électrique. Sur cette base et une surveillance attentive des habitudes de marche du rat - sa démarche - les chercheurs ont spécialement conçus la stimulation électrique pour adapter la foulée du rat en prévision des obstacles à venir, comme des barrières ou des escaliers."Des découvertes scientifiques simples sur la façon dont fonctionne le système nerveux peuvent être exploités pour développer des technologies de neuroprothèses plus efficaces", explique le co-auteur Silvestro Micera. "Nous pensons que cette technologie pourrait un jour améliorer de manière significative la qualité de vie des personnes avec des troubles neurologiques."Vers des essais cliniques utilisant la plate-forme de la marche au CHUVLa stimulation électrique rapportée dans cette étude sera testé chez des patients atteints de lésions de la moelle épinière incomplète dans une étude clinique qui commencera dès l'été prochain, à l'aide d'une nouvelle plate-forme de la marche.Conçu par l'équipe de Courtine, la plate-forme de la marche est faite d'équipements sur mesure comme un tapis roulant et un système de soutien, ainsi que 14 caméras infrarouges qui détectent des marqueurs réfléchissants sur le corps du patient et deux caméras vidéo, qui génèrent des quantités importantes d'informations sur la jambe et le mouvement du corps. Cette information peut être entièrement synchronisée pour un suivi complet et un réglage fin de l'équipement afin d'obtenir une assistance intelligente et adaptative pour la stimulation électrique de la moelle épinière du patient.La plate-forme de la marche se trouve dans une salle de 100 m2 fourni par le CHUV. L'hôpital dispose déjà d'un centre de réadaptation dédiée à la recherche translationnelle, notamment pour les pathologies orthopédiques et neurologiques."La plate-forme de la marche n'est pas un centre de réadaptation", explique Courtine. "C'est un laboratoire de recherche où nous serons en mesure d'étudier et de développer de nouvelles thérapies utilisant une technologie très spécialisée en étroite collaboration avec des experts médicaux ici au CHUV, comme les physiothérapeutes et les médecins."=========================== :arrow: TEXTE ORIGINAL EN ANGLAIS ===========================DATE: 24-Sep-2014From rats to humans: Project NEUWalk closer to clinical trialsLausanne, Switzerland. EPFL scientists have discovered how to control the limbs of a completely paralyzed rat in real time to help it walk again. Their results are published today in Science Translational Medicine.Building on earlier work in rats, this new breakthrough is part of a more general therapy that could one day be implemented in rehabilitation programs for people with spinal cord injury, currently being developed in a European project called NEUWalk. Clinical trials could start as early as next summer using the new Gait Platform now assembled at the CHUV (Lausanne University Hospital).How it worksThe human body needs electricity to function. The electrical output of the human brain, for instance, is about 30 watts. When the circuitry of the nervous system is damaged, the transmission of electrical signals is impaired, often leading to devastating neurological disorders like paralysis.Electrical stimulation of the nervous system is known to help relieve these neurological disorders at many levels. Deep brain stimulation is used to treat tremors related to Parkinson's disease, for example. Electrical signals can be engineered to stimulate nerves to restore a sense of touch in the missing limb of amputees. And electrical stimulation of the spinal cord can restore movement control in spinal cord injury.But can electrical signals be engineered to help a paraplegic walk naturally? The answer is yes, for rats at least."We have complete control of the rat's hind legs," says EPFL neuroscientist Grégoire Courtine. "The rat has no voluntary control of its limbs, but the severed spinal cord can be reactivated and stimulated to perform natural walking. We can control in real-time how the rat moves forward and how high it lifts its legs."The scientists studied rats whose spinal cords were completely severed in the middle-back, so signals from the brain were unable to reach the lower spinal cord. That's where flexible electrodes were surgically implanted. Sending electric current through the electrodes stimulated the spinal cord.They realized that there was a direct relationship between how high the rat lifted its limbs and the frequency of the electrical stimulation. Based on this and careful monitoring of the rat's walking patterns – its gait – the researchers specially designed the electrical stimulation to adapt the rat's stride in anticipation of upcoming obstacles, like barriers or stairs."Simple scientific discoveries about how the nervous system works can be exploited to develop more effective neuroprosthetic technologies," says co-author and neuroengineer Silvestro Micera. "We believe that this technology could one day significantly improve the quality of life of people confronted with neurological disorders."Taking this idea a step further, Courtine and Micera together with colleagues from EPFL's Center for Neuroprosthetics are also exploring the possibility of decoding signals directly from the brain about leg movement and using this information to stimulate the spinal cord.Towards clinical trials using the Gait Platform at the CHUVThe electrical stimulation reported in this study will be tested in patients with incomplete spinal cord injury in a clinical study that may start as early as next summer, using a new Gait Platform that brings together innovative monitoring and rehabilitation technology.Designed by Courtine's team, the Gait Platform consists of custom-made equipment like a treadmill and an overground support system, as well as 14 infrared cameras that detect reflective markers on the patient's body and two video cameras, all of which generate extensive amounts of information about leg and body movement. This information can be fully synchronized for complete monitoring and fine-tuning of the equipment in order to achieve intelligent assistance and adaptive electrical spinal cord stimulation of the patient.The Gait Platform is housed in a 100 square meter room provided by the CHUV. The hospital already has a rehabilitation center dedicated to translational research, notably for orthopedic and neurological pathologies."The Gait Platform is not a rehabilitation center," says Courtine. "It is a research laboratory where we will be able to study and develop new therapies using very specialized technology in close collaboration with medical experts here at the CHUV, like physiotherapists and doctors."Source : http://www.eurekalert.org/pub_releases/2014-09/epfd-frt092114.php
Pour cette année, nous lui avons attribué une subvention de 30 000 euros. Son étude pré-clinique se prolonge jusqu'en 2015, et je proposerai au Conseil d'Administration de lui attribuer le même montant l'an prochain ! En effet, le Pr. Courtine est une bonne pioche !