Des rats paraplégiques retrouvent l’usage de leurs pattes après une thérapie ciblée.

Une nouvelle thérapie stimule la croissance des fibres nerveuses à travers le tissu cicatriciel et transmet des signaux après une lésion de la moelle épinière chez le rat

Suisse / Le 31 août 2018,

Des neuroscientifiques de l’UCLA, de l’Université Harvard et de l’École polytechnique fédérale de Lausanne (EPFL) ont identifié un traitement en trois parties qui déclenche la repousse des axones après une lésion complète de la moelle épinière chez les rongeurs. En plus de faciliter la croissance des axones à travers le tissu cicatriciel, le traitement a permis la transmission de signaux à travers le tissu endommagé, rapporte l’étude dans Nature.

Si les chercheurs peuvent produire des résultats similaires dans des essais sur l’homme, les résultats pourraient mener à une thérapie pour rétablir les connexions axonales chez les personnes vivant avec une lésion de la moelle épinière.

«L’idée était de délivrer une série de trois traitements très différents et de tester si la combinaison pouvait stimuler la repousse des axones déconnectés dans la moelle épinière lésée», explique l’auteur principal Michael Sofroniew (Université de Californie à Los Angeles). «Les études précédentes avaient testé chacun des trois traitements séparément, mais jamais ensemble. La combinaison s’est avérée être la clé.

Selon Sofroniew, de nombreuses décennies de recherche ont montré que les fibres nerveuses humaines ont besoin de trois facteurs : la programmation génétique pour activer la croissance axonale ; une voie moléculaire pour la croissance des fibres ; et une voie protéique qui incite les axones à se développer dans une direction particulière. Ces trois conditions sont actives lorsque les humains se développent dans l’utérus. Après la naissance, ces processus sont interrompus, mais les gènes qui contrôlent les programmes de croissance sont en sommeil. L’objectif de Sofroniew était de relancer l’expression génique.

Premièrement, les chercheurs ont réactivé des cellules nerveuses dans les moelles épinières de souris en injectant un traitement conditionné dans un vecteur viral initialement développé dans le laboratoire de Zhigang He (Harvard, Cambridge, États-Unis).

Deux semaines plus tard, l’équipe de l’UCLA a anesthésié les animaux et déconnecté les axones de la moelle épinière inférieure. Seules les pattes arrières des rongeurs étaient touchées et elles pouvaient toujours bouger et se nourrir.

Deux jours après la blessure, l’équipe a administré un deuxième traitement dans la lésion pour créer de nouvelles voies sur lesquelles les axones préfèrent se développer. Enfin, les chercheurs ont libéré une troisième série de molécules appelées chimio-attractifs. Les axones ciblent ces chimio-attractifs dans le tissu médullaire de l’autre côté de la cicatrice.

Lorsque Sofroniew et ses collègues ont examiné le tissu des souris ayant subi le traitement en trois parties, ils étaient enthousiastes. «Non seulement les axones s’étaient développés de manière importante à travers le tissu cicatriciel», se souvient Sofroniew, «mais de nombreuses fibres nerveuses avaient pénétré dans le tissu médullaire restant de l’autre côté de la lésion et avaient établi de nouvelles connexions avec les neurones».

Les animaux n’ayant pas subi le traitement combiné n’ont présenté aucune repousse d’axone à travers le site de la lésion.

Pour tester la reproductibilité de leurs résultats, l’équipe a répété l’expérience à plusieurs reprises chez la souris à UCLA et chez le rat dans le laboratoire du neuroscientifique suisse Grégoire Courtine (École polytechnique fédérale de Lausanne – Suisse). Les résultats se sont avérés tout aussi importants.

Sofroniew et ses collègues ont eu une autre surprise lorsqu’ils ont testé si les axones nouvellement repoussés pouvaient conduire une activité électrique chez les animaux vivants. «Lorsque nous avons stimulé la moelle épinière de l’animal avec un faible courant électrique au-dessus du site de la lésion, les axones régénérés ont conduit 20% de l’activité électrique normale au-dessous de la lésion», commente Sofroniew. « En revanche, les animaux non traités n’en ont montré aucun. »

Malgré les résultats suggérant que les connexions nouvellement formées peuvent transmettre des signaux à travers la blessure, la capacité de mouvement des rongeurs ne s’est pas améliorée. Ce n’était pas inattendu, selon Sofroniew.

«Nous nous attendions à ce que ces axones repoussés se comportent comme des axones nouvellement développés pendant le développement – ils ne permettent pas immédiatement les fonctions coordonnées», explique Sofroniew. « Tout comme un nouveau-né doit apprendre à marcher, les axones qui repoussent après une blessure nécessiteront un entraînement et une pratique avant de pouvoir récupérer. »

L’équipe de recherche examinera ensuite comment entrainer les circuits nouvellement câblés pour rétablir le mouvement. (1)

Cette recherche a été financée par National Institute of Neurological Disorders and Stroke, the Dr. Miriam and Sheldon G. Adelson Medical Foundation, the International Foundation for Research in Paraplegia, Fondation ALARME, Swiss National Science Foundation, Microscopy Core Resource of UCLA Broad Stem Cell Research Center; Microscopy Core Resource of the Wyss Center for Bio and Neuroengineering, and Wings for Life.

(1) NDT : Un entrainement neuroprosthétique est déjà en cours à l’EPFL dans le laboratoire du Pr. Courtine.
New therapy spurs nerve fibres to regrow through scar tissue and transmit signals after spinal cord injury in rats

31 August 2018, Suisse 

Neuroscientists at UCLA, Harvard University and the Swiss Federal Institute of Technology have identified a three-pronged treatment that triggers axons to regrow after complete spinal cord injury in rodents. In addition to facilitating axon growth through scar tissue, the treatment enabled the transmission of signals across the damaged tissue, the Nature study reports.

If researchers can produce similar results in human studies, the findings could lead to a therapy to restore axon connections in people living with spinal cord injury.

“The idea was to deliver a sequence of three very different treatments and test whether the combination could stimulate disconnected axons to regrow across the scar in the injured spinal cord,” says lead author Michael Sofroniew (David Geffen School of Medicine, University of California Los Angeles, USA). “Previous studies had tested each of the three treatments separately, but never together. The combination proved to be the key.”

According to Sofroniew, many decades of research have shown that human nerve fibres need three things to grow: genetic programming to switch on axonal growth; a molecular pathway for the fibres to grow along; and a protein trail that entices the axons to grow in a particular direction. All three of these conditions are active when humans develop in the womb. After birth, these processes shut down, but the genes that control the growth programmes are dormant. Sofroniew’s goal was to re-start gene expression.

First, the researchers reactivated nerve cells in the spinal cords of mice by injecting a treatment packaged in a viral vector initially developed in the lab of Zhigang He (Harvard, Cambridge, USA).

Two weeks later, the UCLA team anesthetised the animals and disconnected the axons in their lower spinal cords. Only the rodents’ hind legs were affected and they could still move and feed.

Two days after injury, the team administered a second treatment into the lesion to create new pathways on which axons prefer to grow. Finally, the researchers released a third set of molecules called chemo-attractants. The axons target these chemo-attractants, and therefore the spinal cord tissue remaining on the other side of the scar from the injury.

When Sofroniew and his colleagues examined the tissue of mice who underwent the three-part treatment, they were jubilant. “Not only had axons grown robustly through the scar tissue,” Sofroniew recalls, “but many fibres had penetrated into the remaining spinal cord tissue on the other side of the lesion and made new connections with neurons there.”

Animals who did not undergo the combined treatment exhibited no axon regrowth across the injury lesion.

To test the reproducibility of their findings, the team repeated the experiment multiple times in mice at UCLA and in rats in the lab of Swiss neuroscientist Gregoire Courtine (Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland). The results proved equally robust.

Sofroniew and colleagues received another surprise when they tested whether newly regrown axons could conduct electrical activity in live animals. “When we stimulated the animal’s spinal cord with a low electrical current above the injury site, the regrown axons conducted 20% of normal electrical activity below the lesion,” comments Sofroniew. “In contrast, the untreated animals exhibited none.”

Despite the finding suggesting that the newly formed connections can conduct signals across the injury, the rodents’ ability to move did not improve. This was not unexpected, according to Sofroniew.

“We expect that these regrown axons will behave like axons newly grown during development—they do not immediately support coordinated functions,” explains Sofroniew. “Much like a new-born must learn to walk, axons that regrow after injury will require training and practice before they can recover function.”

The research team will next explore how to retrain newly wired circuits to restore movement.

This research was supported by the National Institute of Neurological Disorders and Stroke, the Dr. Miriam and Sheldon G. Adelson Medical Foundation, the International Foundation for Research in Paraplegia; ALARME Foundation, Association Song Taaba, Craig H. Neilsen Foundation, the European Research Council, Paralyzed Veterans Foundation of America, Swiss National Science Foundation, Microscopy Core Resource of UCLA Broad Stem Cell Research Center; Microscopy Core Resource of the Wyss Center for Bio and Neuroengineering; and Wings for Life.

Source : https://spinalnewsinternational.com/fibres-regrow/

En haut, les axones endommagés chez un rat non traité s’arrêtent à la limite de la lésion de la moelle épinière. 
En dessous, les axones chez un rat traité ont traversé la cicatrice, créant de nouvelles connexions de l’autre côté.

Posté dans Actualités
Tags :

Abonnez-vous à ce blog par e-mail.

Saisissez votre adresse e-mail pour vous abonner à ce blog et recevoir une notification de chaque nouvel article par email.

Rejoignez les 493 autres abonnés

images (4)
images (3)
Stimulation épidurale
grégoire courtine
jerrysilver_1
active nerve cell in human neural system
shi-spinal
images
bsi_infographic_epfl_fr
VISUEL_SEP

Groupe Facebook

groupe ALARME
%d blogueurs aiment cette page :