Neurostimulation implantée Pr. Grégoire Courtine

L’intelligence artificielle s’avance pour la rééducation

Résumé «Après plusieurs mois d'entraînement avec stimulation électrique, nos trois participants ont pu activer leurs muscles précédemment paralysés sans stimulation électrique et ils ont même pu faire quelques pas, mains libres, sans aucun soutien» explique Courtine.
Par Caroline Hayes

Lorsque les systèmes de réseau neuro-musculaire d’un corps sont perturbés, la stimulation électrique peut rétablir la communication. L’intelligence artificielle pourrait fournir des informations supplémentaires sur le fonctionnement du corps humain.

La simple action de ramasser une balle et de la lancer implique une communication complexe entre le cerveau et les motoneurones à l’intérieur de la moelle épinière vers les muscles du bras. Que se passe-t-il lorsque les nerfs qui transfèrent ces signaux sont endommagés, provoquant un barrage routier sur le chemin du message?

Des chercheurs du Kentucky Spinal Cord Injury Research Center de l’Université de Louisville, aux États-Unis, ont utilisé un courant électrique continu à des fréquences et des intensités variables et un entraînement locomoteur pour restaurer la connectivité cerveau-colonne vertébrale chez certains patients atteints de lésions de la colonne vertébrale. Ils ont pu se tenir debout, retrouver la mobilité du tronc et marcher quelques pas sans aide lors de l’utilisation du stimulateur péridural.

En Europe, Stimulation Movement Overground (STIMO) est une étude clinique réalisée par une équipe de scientifiques de l’École Polytechnique Fédérale de Lausanne (EPFL) et du CHU de Lausanne, dirigée par le professeur Grégoire Courtine et le professeur Jocelyne Bloch.

En novembre 2018, l’équipe de l’EPFL a observé une croissance prononcée de nouvelles connexions nerveuses dans les zones ciblées par stimulation électrique. Au lieu d’appliquer une stimulation électrique continue, ils ont ciblé des impulsions électriques à des endroits spécifiques pour activer physiologiquement la moelle épinière.

«Après plusieurs mois d’entraînement avec stimulation électrique, nos trois participants ont pu activer leurs muscles précédemment paralysés sans stimulation électrique et ils ont même pu faire quelques pas, mains libres, sans aucun soutien», explique Courtine.

Profile du professeur Grégoire Courtine

Un réseau de 16 électrodes, connectées à des racines spécifiques de la moelle épinière pour des muscles de jambe spécifiques, a été implanté chirurgicalement. Le réseau d’électrodes est connecté à un générateur d’impulsions implantable utilisé pour la stimulation cérébrale profonde chez les personnes atteintes de la maladie de Parkinson, mais qui a été adapté pour cette étude afin d’inclure des capacités de déclenchement en temps réel, qui peuvent être utilisées avec une montre à commande vocale portée par le patient.

Sur la base du mouvement prévu, détecté par des capteurs sur les pieds du patient, des impulsions de stimulation électrique sont délivrées sur les régions de la moelle épinière qui produisent le mouvement. En pensant à activer les muscles des jambes, les connexions résiduelles dans le cerveau activent les muscles tandis que les impulsions électriques activent les circuits neuronaux associés à ces muscles. La recherche montre que la pensée synchronisée et l’excitation des circuits ciblés déclenchent la croissance de nouvelles connexions dans le cerveau et la moelle épinière.

Pour entraîner les muscles, le participant est suspendu dans un harnais qui rétablit l’interaction musculaire de la marche en fonction de la gravité lors de la marche.

Les trois participants ont retrouvé le contrôle volontaire des muscles des jambes qui avaient été paralysés; un effet qui a persisté au-delà des séances d’entraînement et même lorsque la stimulation électrique a été désactivée.

La co-auteure Karen Minassian dit: «La stimulation seule n’est pas assez forte … le participant doit s’engager activement tout le temps et apprendre à reconnaître comment la contribution volontaire amplifie l’apport de la stimulation électrique ciblée.»

«La prochaine étape consiste à commencer plus tôt, juste après la blessure, lorsque le potentiel de guérison est beaucoup plus élevé», explique Bloch.

Pour plus d’informations

The simple action of picking up a ball and throwing it involves complex communication between the brain and motor neurons inside the spinal cord to the muscles in the arm. What happens when the nerves that transfer these signals are damaged, causing a roadblock in the path of the message ?

Researchers at the Kentucky Spinal Cord Injury Research Center at the University of Louisville, USA, used a continuous electrical current at varying frequencies and intensities and locomotor training to restore brain-to-spine connectivity in some spinal injury patients. They were able to stand, regain trunk mobility, and walk a few steps without assistance when using the epidural stimulator.

In Europe, Stimulation Movement Overground (STIMO) is a clinical study by a team of scientists from the École Polytechnique Fédérale de Lausanne (EPFL) and the Lausanne University Hospital (CHUV), headed by Professor Grégoire Courtine and Professor Jocelyne Bloch.

Back in November 2018, the EPFL team observed pronounced growth of new nerve connections in areas that were targeted with electrical stimulation. Instead of applying continuous electrical stimulation, they targeted electrical pulses at specific locations to physiologically activate the spinal cord.

“After several months of training with electrical stimulation, our three participants were able to activate their previously paralysed muscles without electrical stimulation and they could even take a few steps, hands-free, without any support,” says Courtine.

An array of 16 electrodes, mapped to specific roots of the spinal cord for specific leg muscles, was surgically implanted. The electrode array is connected to an implantable pulse generator that is used for deep brain stimulation in people with Parkinson’s disease, but which has been adapted for this study to include real-time triggering capabilities, which can be used with a voice-controlled watch worn by the patient.

Based on the intended movement, detected by sensors on the patient’s feet, electrical stimulation bursts are delivered over the regions of the spinal cord that produce the movement. By thinking about activating the leg muscles, the residual connections in the brain activate muscles while electrical pulses activate the neural circuits associated with these muscles. The research shows that synchronised thought and excitation of the targeted circuits trigger the growth of new connections in the brain and spinal cord.

To train the muscles, the participant is suspended in a body-weighted harness that re-establishes the gravity-dependent gait muscle interaction when walking.

By Caroline Hayes

All three participants recovered voluntary control of leg muscles that had been paralysed; an effect which persisted beyond training sessions and even when the electrical stimulation was turned off.

Co-author Karen Minassian says: “Stimulation alone is not strong enough… the participant needs to actively engage all the time, and learn to recognise how voluntary contribution amplifies the input from the targeted electrical stimulation.”

“The next step is to start earlier, just after the injury, when the potential for recovery is much greater,” says Bloch.

Source : https://eandt.theiet.org/content/articles/2020/04/ai-goes-out-on-a-limb-for-rehabilitation/

[creativ_social][creativ_social_link service= »ja-social-icon-twitter » link= »@assoalarme »] [creativ_social_link service= »ja-social-icon-facebook » link= »https://www.facebook.com/groups/asso.alarme »] [/creativ_social]

Aussi à lire…

GTX Medical, une société de technologie médicale ayant des bureaux aux Pays-Bas et en Suisse, a annoncé qu’elle a reçu la désignation de dispositif révolutionnaire pour le système Go-2, un implant qui fournit une thérapie de stimulation épidurale ciblée pour les patients souffrant de lésions de la moelle épinière. Le dispositif vise à permettre à ces patients de retrouver la fonction motrice de la jambe et le contrôle neurologique.

À l’heure actuelle, les patients atteints de paralysie des membres inférieurs causée par des lésions traumatiques de la moelle épinière ont des options limitées en termes de récupération substantielle fonctionnelle. Le système Go-2 vise à changer cela pour les patients avec un nombre suffisant de fibres nerveuses spinales restantes. L’appareil donne des impulsions électriques aux fibres nerveuses restantes qui imitent les impulsions motrices qui se produisent pendant la marche.Ces impulsions sont synchronisées avec les mouvements que le patient effectue en temps réel et, en effet, l’appareil entraîne le cerveau à utiliser les fibres nerveuses restantes pour aider à la marche. Lorsqu’il est utilisé au fil du temps, le dispositif permet un recâblage neuronal qui peut entraîner des améliorations à long terme de la mobilité des patients.

GTX a également développé un système portable non invasif appelé LIFT pour les patients atteints de paralysie des membres supérieurs après une lésion de la moelle épinière. L’appareil LIFT a reçu la désignation de dispositif révolutionnaire de la FDA

When a body’s neural-muscle network systems are disrupted, electrical stimulation can re-establish communication. Artificial intelligence could provide further insight into how the human body works.



dans les archives