TOUT SUR LA RECHERCHE > Essais cliniques en cours
Neurostimulation implantée - Pr. Grégoire Courtine (EPFL) - ONWARD Medical
gilles:
merci Thierry. :smiley:
TDelrieu:
Voici une publication des recherches de l'équipe du Pr. Courtine en collaboration avec l'UCLA et Harvard dans le journal scientifique Nature. Rien de nouveau, c'est juste la publication "officielle" des résultats de ces laboratoires. Les récupérations fonctionnelles ont déjà été démontrées à l'EPFL chez le rat et ils vont tester chez le primate, avant de passer à l'humain ! :smiley:
Le soutien financier de la "Fondation ALARME" dans ces recherches a été cité ! :smiley:
--- Citer ---Une nouvelle thérapie stimule la croissance des fibres nerveuses à travers le tissu cicatriciel et transmet des signaux après une lésion de la moelle épinière chez le rat
31 août 2018
Des neuroscientifiques de l'UCLA, de l'Université Harvard et de l'École polytechnique fédérale de Lausanne (EPFL) ont identifié un traitement en trois parties qui déclenche la repousse des axones après une lésion complète de la moelle épinière chez les rongeurs. En plus de faciliter la croissance des axones à travers le tissu cicatriciel, le traitement a permis la transmission de signaux à travers le tissu endommagé, rapporte l’étude dans Nature.
Si les chercheurs peuvent produire des résultats similaires dans des essais sur l'homme, les résultats pourraient mener à une thérapie pour rétablir les connexions axonales chez les personnes vivant avec une lésion de la moelle épinière.
«L'idée était de délivrer une série de trois traitements très différents et de tester si la combinaison pouvait stimuler la repousse des axones déconnectés dans la moelle épinière lésée», explique l'auteur principal Michael Sofroniew (Université de Californie à Los Angeles). «Les études précédentes avaient testé chacun des trois traitements séparément, mais jamais ensemble. La combinaison s'est avérée être la clé.
Selon Sofroniew, de nombreuses décennies de recherche ont montré que les fibres nerveuses humaines ont besoin de trois facteurs : la programmation génétique pour activer la croissance axonale ; une voie moléculaire pour la croissance des fibres ; et une voie protéique qui incite les axones à se développer dans une direction particulière. Ces trois conditions sont actives lorsque les humains se développent dans l'utérus. Après la naissance, ces processus sont interrompus, mais les gènes qui contrôlent les programmes de croissance sont en sommeil. L’objectif de Sofroniew était de relancer l’expression génique.
Premièrement, les chercheurs ont réactivé des cellules nerveuses dans les moelles épinières de souris en injectant un traitement conditionné dans un vecteur viral initialement développé dans le laboratoire de Zhigang He (Harvard, Cambridge, États-Unis).
Deux semaines plus tard, l’équipe de l’UCLA a anesthésié les animaux et déconnecté les axones de la moelle épinière inférieure. Seules les pattes arrières des rongeurs étaient touchées et elles pouvaient toujours bouger et se nourrir.
Deux jours après la blessure, l'équipe a administré un deuxième traitement dans la lésion pour créer de nouvelles voies sur lesquelles les axones préfèrent se développer. Enfin, les chercheurs ont libéré une troisième série de molécules appelées chimio-attractifs. Les axones ciblent ces chimio-attractifs dans le tissu médullaire de l'autre côté de la cicatrice.
Lorsque Sofroniew et ses collègues ont examiné le tissu des souris ayant subi le traitement en trois parties, ils étaient enthousiastes. «Non seulement les axones s'étaient développés de manière importante à travers le tissu cicatriciel», se souvient Sofroniew, «mais de nombreuses fibres nerveuses avaient pénétré dans le tissu médullaire restant de l’autre côté de la lésion et avaient établi de nouvelles connexions avec les neurones».
Les animaux n'ayant pas subi le traitement combiné n'ont présenté aucune repousse d'axone à travers le site de la lésion.
Pour tester la reproductibilité de leurs résultats, l'équipe a répété l'expérience à plusieurs reprises chez la souris à UCLA et chez le rat dans le laboratoire du neuroscientifique suisse Grégoire Courtine (École polytechnique fédérale de Lausanne - Suisse). Les résultats se sont avérés tout aussi importants.
Sofroniew et ses collègues ont eu une autre surprise lorsqu'ils ont testé si les axones nouvellement repoussés pouvaient conduire une activité électrique chez les animaux vivants. «Lorsque nous avons stimulé la moelle épinière de l’animal avec un faible courant électrique au-dessus du site de la lésion, les axones régénérés ont conduit 20% de l’activité électrique normale au-dessous de la lésion», commente Sofroniew. "En revanche, les animaux non traités n'en ont montré aucun."
Malgré les résultats suggérant que les connexions nouvellement formées peuvent transmettre des signaux à travers la blessure, la capacité de mouvement des rongeurs ne s’est pas améliorée. Ce n'était pas inattendu, selon Sofroniew.
«Nous nous attendions à ce que ces axones repoussés se comportent comme des axones nouvellement développés pendant le développement - ils ne permettent pas immédiatement les fonctions coordonnées», explique Sofroniew. "Tout comme un nouveau-né doit apprendre à marcher, les axones qui repoussent après une blessure nécessiteront un entraînement et une pratique avant de pouvoir récupérer."
L'équipe de recherche examinera ensuite comment entrainer les circuits nouvellement câblés pour rétablir le mouvement. (1)
Cette recherche a été financée par National Institute of Neurological Disorders and Stroke, the Dr. Miriam and Sheldon G. Adelson Medical Foundation, the International Foundation for Research in Paraplegia, Fondation ALARME, Swiss National Science Foundation, Microscopy Core Resource of UCLA Broad Stem Cell Research Center; Microscopy Core Resource of the Wyss Center for Bio and Neuroengineering, and Wings for Life.
(1) NDT : Un entrainement neuroprosthétique est déjà en cours à l'EPFL dans le laboratoire du Pr. Courtine.
===========================
:arrow: TEXTE ORIGINAL EN ANGLAIS
===========================
New therapy spurs nerve fibres to regrow through scar tissue and transmit signals after spinal cord injury in rats
31 August 2018
Neuroscientists at UCLA, Harvard University and the Swiss Federal Institute of Technology have identified a three-pronged treatment that triggers axons to regrow after complete spinal cord injury in rodents. In addition to facilitating axon growth through scar tissue, the treatment enabled the transmission of signals across the damaged tissue, the Nature study reports.
If researchers can produce similar results in human studies, the findings could lead to a therapy to restore axon connections in people living with spinal cord injury.
“The idea was to deliver a sequence of three very different treatments and test whether the combination could stimulate disconnected axons to regrow across the scar in the injured spinal cord,” says lead author Michael Sofroniew (David Geffen School of Medicine, University of California Los Angeles, USA). “Previous studies had tested each of the three treatments separately, but never together. The combination proved to be the key.”
According to Sofroniew, many decades of research have shown that human nerve fibres need three things to grow: genetic programming to switch on axonal growth; a molecular pathway for the fibres to grow along; and a protein trail that entices the axons to grow in a particular direction. All three of these conditions are active when humans develop in the womb. After birth, these processes shut down, but the genes that control the growth programmes are dormant. Sofroniew’s goal was to re-start gene expression.
First, the researchers reactivated nerve cells in the spinal cords of mice by injecting a treatment packaged in a viral vector initially developed in the lab of Zhigang He (Harvard, Cambridge, USA).
Two weeks later, the UCLA team anesthetised the animals and disconnected the axons in their lower spinal cords. Only the rodents’ hind legs were affected and they could still move and feed.
Two days after injury, the team administered a second treatment into the lesion to create new pathways on which axons prefer to grow. Finally, the researchers released a third set of molecules called chemo-attractants. The axons target these chemo-attractants, and therefore the spinal cord tissue remaining on the other side of the scar from the injury.
When Sofroniew and his colleagues examined the tissue of mice who underwent the three-part treatment, they were jubilant. “Not only had axons grown robustly through the scar tissue,” Sofroniew recalls, “but many fibres had penetrated into the remaining spinal cord tissue on the other side of the lesion and made new connections with neurons there.”
Animals who did not undergo the combined treatment exhibited no axon regrowth across the injury lesion.
To test the reproducibility of their findings, the team repeated the experiment multiple times in mice at UCLA and in rats in the lab of Swiss neuroscientist Gregoire Courtine (Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland). The results proved equally robust.
Sofroniew and colleagues received another surprise when they tested whether newly regrown axons could conduct electrical activity in live animals. “When we stimulated the animal’s spinal cord with a low electrical current above the injury site, the regrown axons conducted 20% of normal electrical activity below the lesion,” comments Sofroniew. “In contrast, the untreated animals exhibited none.”
Despite the finding suggesting that the newly formed connections can conduct signals across the injury, the rodents’ ability to move did not improve. This was not unexpected, according to Sofroniew.
“We expect that these regrown axons will behave like axons newly grown during development—they do not immediately support coordinated functions,” explains Sofroniew. “Much like a new-born must learn to walk, axons that regrow after injury will require training and practice before they can recover function.”
The research team will next explore how to retrain newly wired circuits to restore movement.
This research was supported by the National Institute of Neurological Disorders and Stroke, the Dr. Miriam and Sheldon G. Adelson Medical Foundation, the International Foundation for Research in Paraplegia; ALARME Foundation, Association Song Taaba, Craig H. Neilsen Foundation, the European Research Council, Paralyzed Veterans Foundation of America, Swiss National Science Foundation, Microscopy Core Resource of UCLA Broad Stem Cell Research Center; Microscopy Core Resource of the Wyss Center for Bio and Neuroengineering; and Wings for Life.
Source : https://spinalnewsinternational.com/fibres-regrow/
En haut, les axones endommagés chez un rat non traité s'arrêtent à la limite de la lésion de la moelle épinière.
En dessous, les axones chez un rat traité ont traversé la cicatrice, créant de nouvelles connexions de l'autre côté.
--- Fin de citation ---
Arnaud:
Un rat a reconnecté sa moelle épinière pour remarcher !
Des rats paraplégiques retrouvent l’usage de leurs pattes après une thérapie ciblée. Pour la première fois, les chercheurs de l’EPFL visualisent la méthode qui a permis la création de nouvelles connexions entre le cerveau et la moelle épinière !
Grâce à une stimulation chimique et électrique de la moelle épinière, suivie d'une rééducation intensive, des rats paraplégiques ont retrouvé l'usage de leurs membres paralysés. Aujourd'hui, pour la première fois, une étude publiée par l'équipe de Grégoire Courtine, chef d'unité au Centre de neuroprothèses de l'Ecole Polytechnique Fédérale de Lausanne (EPFL) dans Nature Neuroscience, révèle que la thérapie provoque de nouvelles connexions entre le cerveau et la moelle épinière ! Un véritable espoir pour l'essai clinique sur l'humain qui est actuellement en cours.
Faire remarcher des patients paraplégiques, c'est l'enjeu des travaux de l'équipe de Lausanne depuis quinze ans. A partir de 2009, elle a enchaîné les études montrant qu'il était possible de faire remarcher un rat totalement paralysé. Comment ? En stimulant électriquement et chimiquement la moelle épinière lésée. Pour rappel, la moelle épinière est un tube nerveux contenu dans la colonne vertébrale, qui achemine les informations du cerveau vers les différentes parties du corps par l'intermédiaire des nerfs, véhiculant les commandes motrices mais aussi les informations sensitives en provenance du corps. Lorsque la moelle épinière est sectionnée ou écrasée, ses fibres nerveuses ne repoussent pas, empêchant les commandes électriques du cerveau de jouer leur rôle et paralysant un certain nombre de fonctions, notamment le contrôle des membres.
" Les commandes du cerveau qui actionnent d'ordinaire les muscles des jambes ne répondent plus, raconte Grégoire Courtine à Sciences et Avenir. Notre méthode consiste à appliquer deux types de stimulations en dessous de cette lésion. D'abord par l'injection d'un cocktail de molécules stimulant les neurones, puis quelques minutes plus tard par la stimulation électrique, via des électrodes implantées sur la partie dorsale de la moelle épinière". Ces deux interventions "réveillent" la moelle épinière en quelque sorte.
Ce n'est pas tout. Un entrainement intensif, soutenu par un harnais intelligent qui allège le poids de l'animal, permet au rat de recouvrer au bout d'un certain temps la marche volontaire. "L'entrainement hautement actif, volontaire, avec l'état fonctionnel de la moelle épinière sous la lésion encourage les nerfs à repousser, affirme Grégoire Courtine, à établir de nouvelles connexions et rétablir la communication entre le cerveau et la moelle épinière. C'est ce qu'on appelle la neuroplasticité"
Jusqu'ici on n'avait pas encore visualisé cette " neuroplasticité ". La nouvelle étude de l'EPFL fait intervenir des techniques d'imagerie de pointe (optogénétique, chimiogébétique…) qui permettent d'activer ou d'inhiber sélectivement des circuits de neurones pour en étudier la fonction. Mais aussi un puissant microscope dit " à feuilles lumineuses " qui fait apparaître l'organisation des réseaux nerveux. Ainsi, l'équipe a observé qu'il existait chez les rats traités une "ré-organisation des connexions" . " Le cerveau ré-achemine des commandes motrices spécifiques par des voies alternatives ", expose l'EPFL. De nouvelles connexions se forment, entre le cortex moteur et le tronc cérébral, et entre le tronc cérébral et la moelle épinière. "Ce qui reconnecte le cerveau avec la moelle épinière de l'autre côté de la lésion".
Reste à vérifier si la thérapie est aussi efficace chez l'humain. Après des essais positifs chez le singe, cinq patients paraplégiques ont en effet, été implantés avec un stimulateur dans la moelle épinière puis sont entrés en phase de rééducation intensive utilisant le système robotique qui a été adapté à homme. "Sur les humains le résultat est encore plus avancé", assure Grégoire Courtine qui annonce une publication probable de l'essai clinique à la fin 2018.
Source :
https://www.sciencesetavenir.fr/sante/os-et-muscles/paralyse-le-rat-a-reconnecte-sa-moelle-epiniere-pour-remarcher_122163
gilles:
génial! c'est plaisant de lire ce petit mot. :smiley:
TDelrieu:
Voici le dernier courriel du Pr. Grégoire Courtine :smiley:
--- Citer ---Cher Thierry,
Veuillez trouver en pièce jointe un résumé de nos activités de recherche soutenues par Alarme en 2015, ainsi que notre plan d’attaque pour 2016.
Grace aux données préliminaires prometteuses obtenues durant les 2 dernières années avec le soutien de l’association Alarme, nous sommes parvenu à obtenir un financement de recherche pour 2 doctorants (Mark et Sabry) qui sont complètement dédiés à ces activités, et travaillent en parfaite synergie. Sabry est un jeune médecin talentueux qui a traduit le projet de recherche en Francais. J’ai pensé que vous apprécieriez.
Nous avons décrit les 2 stratégies que Mark et Sabry poursuivent ensemble, avec des premieres experiences fascinantes sur les primates. Cette ligne de recherche est compliquée et la route est encore longue, mais nous avançons avec des thérapies applicables cliniquement.
Par ailleurs, je suis heureux de vous apprendre que l’essai clinique avec stimulation de la moelle épinière et entrainement robotique va débuter officiellement cette année.
Encore une belle année de recherche en perspective.
Je vous pris d’accepter toute notre reconnaissance, la mienne et celle de mon équipe, pour votre soutien indéfectible au cours de ces années.
Sincères salutations - G
------------------------------------------------------------------------------------------------------------
Grégoire COURTINE, PhD
Professor, International Paraplegic Foundation Chair in Spinal Cord Repair
Center for Neuroprosthetics and Brain Mind Institute
SWISS FEDERAL INSTITUTE OF TECHNOLOGY (EPFL)
EPFL SV UPCOURTINE - station 19
CH-1015 Lausanne
(Office) SV - 2808
--- Fin de citation ---
Navigation
[#] Page suivante
[*] Page précédente
Utiliser la version classique