INSCRIPTION AU FORUM ALARME cliquez ici
0 Membres et 1 Invité sur ce sujet
Bonjour Thiery, bonjour tous,Je vous écris pour vous faire part de la bonne nouvelle que nous venons de publier nos résultats sur la régénération des axones par lésion complète de la moelle épinière dans le journal Nature. Votre généreux soutien à ce projet très risqué et ambitieux a été déterminant dans nos efforts et nous vous en sommes extrêmement reconnaissants! J'ai joint la publication de la recherche à cette e-mail. De plus, voici un lien vers le communiqué de presse de l'EPFL :https://actu.epfl.ch/news/un-cocktail-permet-aux-fibres-nerveuses-sectionnee/Aussi, voici un excellent article sur notre étude de Scientific American :https://www.scientificamerican.com/article/growth-cocktail-helps-restore-spinal-connections-in-the-most-severe-injuries/Nous travaillons actuellement à la combinaison de cette stratégie régénératrice et de la réhabilitation afin de rendre ces axones fonctionnels sur le plan comportemental. Nous vous tiendrons au courant des progrès.J'espère vous revoir tous bientôt.Avec mes meilleures salutations,Mark Anderson
Un « cocktail » permet aux fibres nerveuses sectionnées de repousser29.08.18 - Des scientifiques ont élaboré une recette en trois étapes qui permet de régénérer chez le rongeur des fibres nerveuses médullaires entièrement sectionnées. La réadaptation reste néanmoins nécessaire restaurer la locomotion. Les résultats sont présentés dans le numéro de la revue scientifique Nature paru aujourd’hui.Le corps du mammifère adulte dispose d’une incroyable capacité à cicatriser de lui-même après une lésion. Mais les lésions de la moelle épinière conduisent à des situations dévastatrices car les fibres nerveuses sectionnées ne parviennent pas à se régénérer dans le système nerveux central. Les commandes électriques envoyées par le cerveau pour induire le mouvement n'atteignent donc plus les muscles, ce qui se traduit par une paralysie complète et définitive.Qu’arriverait-il s’il était possible de combler ce vide, c’est-à-dire de régénérer des fibres nerveuses dans la moelle épinière sectionnée?Dans le cadre d’un travail conjoint dirigé par l’EPFL (École polytechnique fédérale de Lausanne) en Suisse et l’UCLA (Universté de Californie à Los Angeles) aux États-Unis, des scientifiques ont compris les mécanismes biologiques sous-jacents requis par les fibres nerveuses sectionnées pour se régénérer dans les lésions médullaires complètes, comblant ce vide-là chez la souris et le rat pour la première fois.La recette qu’ils ont élaborée implique la présence de trois composantes pour que la croissance des fibres nerveuses puisse se faire. L’absence de l’une des trois composantes suffit à faire échouer la recette et à ne pas pouvoir régénérer de nouveaux axones dans la moelle épinière.«Notre objectif était de reproduire, chez l’adulte, les conditions qui favorisent la croissance des fibres nerveuses pendant le développement,» explique Grégoire Courtine, de l’EPFL, principal auteur de l’étude. «Nous avons compris les combinaisons entre les mécanismes biologiques qui sont nécessaires pour permettre la repousse des fibres nerveuses sectionnées dans les lésions médullaires complètes chez le mammifère adulte.»Par analogie, supposons que les fibres nerveuses soient des arbres. Les branches terminales des axones seraient alors comme les branches de l’arbre. Si l’on coupe les branches principales de l’arbre, de petites branches peuvent pousser spontanément le long du tronc subsistant. Mais les branches coupées, elles, ne repoussent pas.Le même résultat s’applique pour les neurones chez l’adulte: de nouvelles branches peuvent pousser à partir d’un axone sectionné et former des connexions au-dessus d’une lésion, mais la partie sectionnée de l’axone ne repousse pas. La recette à trois composantes révélée par les scientifiques change cette donnée et permet à des axones entiers de se régénérer.« Nous avons fait repousser des forêts d’axones,» ajoute Grégoire Courtine.Pour recréer les conditions physiologiques d’un système nerveux en cours de développement, les scientifiques administrent une séquence de facteurs de croissance, de protéines et d’hormones, pour satisfaire aux trois phases essentielles de la recette: réactiver le programme génétique de croissance des axones; établir un environnement permissif pour la croissance des axones; et définir une pente chimique qui marque la trajectoire le long de laquelle les axones sont amenés à repousser. En l’espace de 4 semaines, les axones repoussent de quelques millimètres.Les nouveaux axones sont capables de transmettre les signaux électriques (et donc les signaux nerveux) dans la lésion, mais cette connectivité retrouvée n’est pas suffisante pour rétablir la locomotion. Les rongeurs sont restés paralysés, comme le prévoyaient les scientifiques, car les nouveaux circuits ne peuvent pas être fonctionnels sans le soutien de stratégies de réadaptation.«Nous avons décortiqué les exigences mécaniques nécessaires pour la régénération d’axones dans la moelle épinière, mais cela ne se traduit pas par une fonction,» explique Mark Anderson de l’EPFL et l’UCLA, principal auteur de l’étude. «Nous avons maintenant besoin d’étudier les exigences nécessaires pour que les axones forment les connexions appropriées avec les circuits locomoteurs en dessous de la lésion. Cela impliquera une réadaptation avec stimulation électrique pour intégrer, ajuster et fonctionnaliser les nouveaux axones de manière à ce que les rongeurs puissent remarcher. »Il est encore trop tôt pour en déduire des applications chez l’homme. Par exemple, la première composante de la recette qui stimule la croissance des neurones se produit deux semaines en amont de la lésion; pour l’heure, il faut donc mener d’autres études pour que la recette puisse se transposer dans le contexte clinique.Source : https://actu.epfl.ch/news/un-cocktail-permet-aux-fibres-nerveuses-sectionnee/
Une nouvelle thérapie stimule la croissance des fibres nerveuses à travers le tissu cicatriciel et transmet des signaux après une lésion de la moelle épinière chez le rat31 août 2018Des neuroscientifiques de l'UCLA, de l'Université Harvard et de l'École polytechnique fédérale de Lausanne (EPFL) ont identifié un traitement en trois parties qui déclenche la repousse des axones après une lésion complète de la moelle épinière chez les rongeurs. En plus de faciliter la croissance des axones à travers le tissu cicatriciel, le traitement a permis la transmission de signaux à travers le tissu endommagé, rapporte l’étude dans Nature.Si les chercheurs peuvent produire des résultats similaires dans des essais sur l'homme, les résultats pourraient mener à une thérapie pour rétablir les connexions axonales chez les personnes vivant avec une lésion de la moelle épinière.«L'idée était de délivrer une série de trois traitements très différents et de tester si la combinaison pouvait stimuler la repousse des axones déconnectés dans la moelle épinière lésée», explique l'auteur principal Michael Sofroniew (Université de Californie à Los Angeles). «Les études précédentes avaient testé chacun des trois traitements séparément, mais jamais ensemble. La combinaison s'est avérée être la clé.Selon Sofroniew, de nombreuses décennies de recherche ont montré que les fibres nerveuses humaines ont besoin de trois facteurs : la programmation génétique pour activer la croissance axonale ; une voie moléculaire pour la croissance des fibres ; et une voie protéique qui incite les axones à se développer dans une direction particulière. Ces trois conditions sont actives lorsque les humains se développent dans l'utérus. Après la naissance, ces processus sont interrompus, mais les gènes qui contrôlent les programmes de croissance sont en sommeil. L’objectif de Sofroniew était de relancer l’expression génique.Premièrement, les chercheurs ont réactivé des cellules nerveuses dans les moelles épinières de souris en injectant un traitement conditionné dans un vecteur viral initialement développé dans le laboratoire de Zhigang He (Harvard, Cambridge, États-Unis).Deux semaines plus tard, l’équipe de l’UCLA a anesthésié les animaux et déconnecté les axones de la moelle épinière inférieure. Seules les pattes arrières des rongeurs étaient touchées et elles pouvaient toujours bouger et se nourrir.Deux jours après la blessure, l'équipe a administré un deuxième traitement dans la lésion pour créer de nouvelles voies sur lesquelles les axones préfèrent se développer. Enfin, les chercheurs ont libéré une troisième série de molécules appelées chimio-attractifs. Les axones ciblent ces chimio-attractifs dans le tissu médullaire de l'autre côté de la cicatrice.Lorsque Sofroniew et ses collègues ont examiné le tissu des souris ayant subi le traitement en trois parties, ils étaient enthousiastes. «Non seulement les axones s'étaient développés de manière importante à travers le tissu cicatriciel», se souvient Sofroniew, «mais de nombreuses fibres nerveuses avaient pénétré dans le tissu médullaire restant de l’autre côté de la lésion et avaient établi de nouvelles connexions avec les neurones».Les animaux n'ayant pas subi le traitement combiné n'ont présenté aucune repousse d'axone à travers le site de la lésion.Pour tester la reproductibilité de leurs résultats, l'équipe a répété l'expérience à plusieurs reprises chez la souris à UCLA et chez le rat dans le laboratoire du neuroscientifique suisse Grégoire Courtine (École polytechnique fédérale de Lausanne - Suisse). Les résultats se sont avérés tout aussi importants.Sofroniew et ses collègues ont eu une autre surprise lorsqu'ils ont testé si les axones nouvellement repoussés pouvaient conduire une activité électrique chez les animaux vivants. «Lorsque nous avons stimulé la moelle épinière de l’animal avec un faible courant électrique au-dessus du site de la lésion, les axones régénérés ont conduit 20% de l’activité électrique normale au-dessous de la lésion», commente Sofroniew. "En revanche, les animaux non traités n'en ont montré aucun."Malgré les résultats suggérant que les connexions nouvellement formées peuvent transmettre des signaux à travers la blessure, la capacité de mouvement des rongeurs ne s’est pas améliorée. Ce n'était pas inattendu, selon Sofroniew.«Nous nous attendions à ce que ces axones repoussés se comportent comme des axones nouvellement développés pendant le développement - ils ne permettent pas immédiatement les fonctions coordonnées», explique Sofroniew. "Tout comme un nouveau-né doit apprendre à marcher, les axones qui repoussent après une blessure nécessiteront un entraînement et une pratique avant de pouvoir récupérer."L'équipe de recherche examinera ensuite comment entrainer les circuits nouvellement câblés pour rétablir le mouvement. (1)Cette recherche a été financée par National Institute of Neurological Disorders and Stroke, the Dr. Miriam and Sheldon G. Adelson Medical Foundation, the International Foundation for Research in Paraplegia, Fondation ALARME, Swiss National Science Foundation, Microscopy Core Resource of UCLA Broad Stem Cell Research Center; Microscopy Core Resource of the Wyss Center for Bio and Neuroengineering, and Wings for Life.(1) NDT : Un entrainement neuroprosthétique est déjà en cours à l'EPFL dans le laboratoire du Pr. Courtine.=========================== :arrow: TEXTE ORIGINAL EN ANGLAIS ===========================New therapy spurs nerve fibres to regrow through scar tissue and transmit signals after spinal cord injury in rats31 August 2018 Neuroscientists at UCLA, Harvard University and the Swiss Federal Institute of Technology have identified a three-pronged treatment that triggers axons to regrow after complete spinal cord injury in rodents. In addition to facilitating axon growth through scar tissue, the treatment enabled the transmission of signals across the damaged tissue, the Nature study reports.If researchers can produce similar results in human studies, the findings could lead to a therapy to restore axon connections in people living with spinal cord injury.“The idea was to deliver a sequence of three very different treatments and test whether the combination could stimulate disconnected axons to regrow across the scar in the injured spinal cord,” says lead author Michael Sofroniew (David Geffen School of Medicine, University of California Los Angeles, USA). “Previous studies had tested each of the three treatments separately, but never together. The combination proved to be the key.”According to Sofroniew, many decades of research have shown that human nerve fibres need three things to grow: genetic programming to switch on axonal growth; a molecular pathway for the fibres to grow along; and a protein trail that entices the axons to grow in a particular direction. All three of these conditions are active when humans develop in the womb. After birth, these processes shut down, but the genes that control the growth programmes are dormant. Sofroniew’s goal was to re-start gene expression.First, the researchers reactivated nerve cells in the spinal cords of mice by injecting a treatment packaged in a viral vector initially developed in the lab of Zhigang He (Harvard, Cambridge, USA).Two weeks later, the UCLA team anesthetised the animals and disconnected the axons in their lower spinal cords. Only the rodents’ hind legs were affected and they could still move and feed.Two days after injury, the team administered a second treatment into the lesion to create new pathways on which axons prefer to grow. Finally, the researchers released a third set of molecules called chemo-attractants. The axons target these chemo-attractants, and therefore the spinal cord tissue remaining on the other side of the scar from the injury.When Sofroniew and his colleagues examined the tissue of mice who underwent the three-part treatment, they were jubilant. “Not only had axons grown robustly through the scar tissue,” Sofroniew recalls, “but many fibres had penetrated into the remaining spinal cord tissue on the other side of the lesion and made new connections with neurons there.”Animals who did not undergo the combined treatment exhibited no axon regrowth across the injury lesion.To test the reproducibility of their findings, the team repeated the experiment multiple times in mice at UCLA and in rats in the lab of Swiss neuroscientist Gregoire Courtine (Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland). The results proved equally robust.Sofroniew and colleagues received another surprise when they tested whether newly regrown axons could conduct electrical activity in live animals. “When we stimulated the animal’s spinal cord with a low electrical current above the injury site, the regrown axons conducted 20% of normal electrical activity below the lesion,” comments Sofroniew. “In contrast, the untreated animals exhibited none.”Despite the finding suggesting that the newly formed connections can conduct signals across the injury, the rodents’ ability to move did not improve. This was not unexpected, according to Sofroniew.“We expect that these regrown axons will behave like axons newly grown during development—they do not immediately support coordinated functions,” explains Sofroniew. “Much like a new-born must learn to walk, axons that regrow after injury will require training and practice before they can recover function.”The research team will next explore how to retrain newly wired circuits to restore movement.This research was supported by the National Institute of Neurological Disorders and Stroke, the Dr. Miriam and Sheldon G. Adelson Medical Foundation, the International Foundation for Research in Paraplegia; ALARME Foundation, Association Song Taaba, Craig H. Neilsen Foundation, the European Research Council, Paralyzed Veterans Foundation of America, Swiss National Science Foundation, Microscopy Core Resource of UCLA Broad Stem Cell Research Center; Microscopy Core Resource of the Wyss Center for Bio and Neuroengineering; and Wings for Life.Source : https://spinalnewsinternational.com/fibres-regrow/En haut, les axones endommagés chez un rat non traité s'arrêtent à la limite de la lésion de la moelle épinière. En dessous, les axones chez un rat traité ont traversé la cicatrice, créant de nouvelles connexions de l'autre côté.
Cher Thierry,Veuillez trouver en pièce jointe un résumé de nos activités de recherche soutenues par Alarme en 2015, ainsi que notre plan d’attaque pour 2016.Grace aux données préliminaires prometteuses obtenues durant les 2 dernières années avec le soutien de l’association Alarme, nous sommes parvenu à obtenir un financement de recherche pour 2 doctorants (Mark et Sabry) qui sont complètement dédiés à ces activités, et travaillent en parfaite synergie. Sabry est un jeune médecin talentueux qui a traduit le projet de recherche en Francais. J’ai pensé que vous apprécieriez.Nous avons décrit les 2 stratégies que Mark et Sabry poursuivent ensemble, avec des premieres experiences fascinantes sur les primates. Cette ligne de recherche est compliquée et la route est encore longue, mais nous avançons avec des thérapies applicables cliniquement. Par ailleurs, je suis heureux de vous apprendre que l’essai clinique avec stimulation de la moelle épinière et entrainement robotique va débuter officiellement cette année.Encore une belle année de recherche en perspective.Je vous pris d’accepter toute notre reconnaissance, la mienne et celle de mon équipe, pour votre soutien indéfectible au cours de ces années.Sincères salutations - G ------------------------------------------------------------------------------------------------------------Grégoire COURTINE, PhDProfessor, International Paraplegic Foundation Chair in Spinal Cord Repair Center for Neuroprosthetics and Brain Mind InstituteSWISS FEDERAL INSTITUTE OF TECHNOLOGY (EPFL)EPFL SV UPCOURTINE - station 19CH-1015 Lausanne(Office) SV - 2808
Idem ! CiterG-Therapeutics, une neuroprothèse pour soigner la moelle épinière Les recherches du laboratoire suisse G-Therapeutics sur les neuroprothèses constituent un espoir pour les millions de personnes paralysées par une lésion de leur moelle épinière. Dans les prochaines années, ils pourraient mettre au point une prothèse neurologique susceptible de leur rendre l'usage de leurs membres.Il faut imaginer la moelle épinière comme une autoroute où circulent des signaux électriques faisant le lien entre la tête et les autres parties du corps. Une lésion de cet organe conduit à la paralysie dès lors que ces signaux électriques se retrouvent coincés dans un embouteillage. Une blessure souvent irréversible. Sauf que la technologie pourrait bien faire des miracles dans ce domaine en aidant le système nerveux à se réparer par lui-même. Le traitement vise à restaurer un contrôle volontaire de la locomotionLe traitement de G-Therapeutics consiste en l'implantation d'une neuroprothèse ultra élastique sur la moelle épinière. La prothèse constituée d'un substrat de silicone parcouru de pistes électriques faites d'or craquelé stimule électriquement les circuits neuronaux de la moelle épinière au bon endroit et au bon moment. Parallèlement, un support robotique permet d'entraîner les patients à la marche. Et la combinaison des deux réorganise les circuits neuronaux, cérébraux et spinaux pour restaurer un contrôle volontaire de la locomotion.Il reste encore du chemin à parcourir. Testée sur plusieurs espèces d'animaux, ces prothèses ont permis une réorganisation fonctionnelle dans près de 100% des cas. Mais il faut encore les tester sur l'homme, vérifier la biocompatibilité des nouveaux matériaux utilisés et enfin miniaturiser le dispositif.Source : http://www.journaldunet.com/ebusiness/magazine/edf-pulse-g-therapeutics-neuroprothese-soigner-moelle-epiniere.shtml?een=834cf9fe7778d5c8174ce6e48e4d452f&utm_source=greenarrow&utm_medium=mail&utm_campaign=ml50_selectionstart-
G-Therapeutics, une neuroprothèse pour soigner la moelle épinière Les recherches du laboratoire suisse G-Therapeutics sur les neuroprothèses constituent un espoir pour les millions de personnes paralysées par une lésion de leur moelle épinière. Dans les prochaines années, ils pourraient mettre au point une prothèse neurologique susceptible de leur rendre l'usage de leurs membres.Il faut imaginer la moelle épinière comme une autoroute où circulent des signaux électriques faisant le lien entre la tête et les autres parties du corps. Une lésion de cet organe conduit à la paralysie dès lors que ces signaux électriques se retrouvent coincés dans un embouteillage. Une blessure souvent irréversible. Sauf que la technologie pourrait bien faire des miracles dans ce domaine en aidant le système nerveux à se réparer par lui-même. Le traitement vise à restaurer un contrôle volontaire de la locomotionLe traitement de G-Therapeutics consiste en l'implantation d'une neuroprothèse ultra élastique sur la moelle épinière. La prothèse constituée d'un substrat de silicone parcouru de pistes électriques faites d'or craquelé stimule électriquement les circuits neuronaux de la moelle épinière au bon endroit et au bon moment. Parallèlement, un support robotique permet d'entraîner les patients à la marche. Et la combinaison des deux réorganise les circuits neuronaux, cérébraux et spinaux pour restaurer un contrôle volontaire de la locomotion.Il reste encore du chemin à parcourir. Testée sur plusieurs espèces d'animaux, ces prothèses ont permis une réorganisation fonctionnelle dans près de 100% des cas. Mais il faut encore les tester sur l'homme, vérifier la biocompatibilité des nouveaux matériaux utilisés et enfin miniaturiser le dispositif.Source : http://www.journaldunet.com/ebusiness/magazine/edf-pulse-g-therapeutics-neuroprothese-soigner-moelle-epiniere.shtml?een=834cf9fe7778d5c8174ce6e48e4d452f&utm_source=greenarrow&utm_medium=mail&utm_campaign=ml50_selectionstart-