Voir les contributions

Cette section vous permet de consulter les contributions (messages, sujets et fichiers joints) d'un utilisateur. Vous ne pourrez voir que les contributions des zones auxquelles vous avez accès.


Sujets - Renaud

Pages: [1]
1
Bonjour à tous,
 
le Miami Project à publié une étude signicatives principalement sur la suppression de 2 gênes PTEN et SOCS3, favorisant une régénération axonale soutenue et sur de longue distance à la suite d'une lésion sur l système nerveux centrale.
Le Miami Project espère transcrire cette découverte vers l'essais clinique dans un future proche.
 
L'article est en anglais si une personne à le temps de le traduire:
 
 
THE MIAMI PROJECT RESEARCHER CO-AUTHORS MANUSCRIPT PUBLISHED IN NATURE JOURNAL
Miami Project researcher, Dr. Kevin Park, and colleagues, published a manuscript in the December 15th issue of the preeminent journal Nature, that demonstrates the deletion of two genes, phosphatase and tensin homologue (PTEN) and suppressor of cytokine signaling 3 (SOCS3), which are highly expressed in the injured central nervous system (CNS) neurons, promotes continued and significant long-tract regeneration following CNS injury.
 
The study, conducted with colleagues at F.M. Kirby Neurobiology Center, Children's Hospital Boston, and Harvard Medical School, and led by Dr. Zhigang He, was conducted on damaged optic nerves, which are part of the CNS.  These findings may ultimately provide an important avenue to researchers currently unraveling the mysteries of spinal cord injury (SCI) and other neurodegenerative disorders since long distance axonal regeneration has, until this point, proved difficult to attain.  It is widely felt among experts that long distance regeneration is an essential component to functional recovery following CNS injury, which is why these results are exciting to neuroscientists.
 
“This is truly an exciting time in paralysis and CNS injury research.  Each day we are answering more questions that provide us another piece of the puzzle,” said Miami Project Scientific Director, Dr. W. Dalton Dietrich.  “As our researchers continue to obtain more critical information, viable solutions and strategies for ultimately treating paralysis come into clearer view.  We hope to then move these promising therapies for testing in the clinic in the near future.”
 
Axons of the mammalian CNS typically do not regenerate after injury. Developing a strategy to promote regeneration and functional reconnection of injured CNS axons has been a long standing challenge, and central to The Miami Project to Cure Paralysis’ mission. This study demonstrated for the first time that simultaneous removal of both the PTEN and SOCS3 genes, which are highly expressed in injured neurons, allows sustained and robust long distance axon regeneration in the optic nerve after injury.  In addition, this study showed that double deletion of these genes works synergistically to regulate activation and expression of several growth-related genes that improve axon regeneration. Stemming from this finding, future work in this area will be directed at examining whether the regenerated axons after PTEN/SOCS3 deletion can reform synapses and restore behavioral functions.
 
Injury to the CNS has devastating effects on the structure and function of the brain and spinal cord.  Since the early 1980s, immense research progress has been made and has given hope that injuries to the CNS will one day be repairable. Still, there is much that researchers need to learn about the complex processes that occur in the brain and spinal cord after injury, and how those processes can be changed or reversed.
 
Miami Project investigators daily are conducting a broad scope of research to address the consequences of these neurological injuries. Our work is directed at the following areas: understanding what happens after CNS injury; protecting the injured brain and spinal cord from further damage, replacing dead nervous system cells (neurons and glia), promoting and guiding axon growth, reestablishing essential circuitry, preventing and treating complications, maintaining maximum potential for recovery, and ultimately translating our findings from laboratory research to clinical trials.
 

2

Une équipe japonnaise à étudier les effets de cette acide avec des cellules souches neurales dans un modèle de lésion médullaire. Les résultats s'avèrent très encourageant sachant que cette acide est déjà utilisées comme traitement pour l'épilepsie. L'article est en anglais si une personne veut le traduire...



Neural stem cells continue to show promise in spinal cord injury treatment  Stepahead Comment:
 
A team in Japan has produced a substantial degree of recovery in paralyzed mice by transplanting neural stem cells (NSCs) into the spinal cord and then administering a commonly used drug in humans, Valproic acid (marketed as Depakote). When NSCs are left to their own devices they primarily will differentiate into glial cells instead of neurons. The work described below demonstrates that Valproic acid can drive differentiation of NSCs to neurons while they are developing in vivo. This in itself is a significant finding, but they also showed that the new neurons could produce recovery of function by forming relays with existing native neurons. This occurred in the absence of regeneration of the endogenous neurons. Since both NSCs and Valproic acid have been used in humans previously this combination may present an opportunity for human treatment.
 
 
Repairing Spinal Cord Injury With Manipulated Neural Stem Cells
 
Public release date: 8-Aug-2010
 
ScienceDaily (Aug. 18, 2010) — One of the most common causes of disability in young adults is spinal cord injury. Currently, there is no proven reparative treatment. Hope that neural stem cells (NSCs) might be of benefit to individuals with severe spinal cord injury has now been provided by the work of a team of researchers, led by Kinichi Nakashima, at Nara Institute of Science and Technology, Japan, in a mouse model of this devastating condition.
 
In the study, mice with severe spinal cord injury were transplanted with NSCs and administered a drug known as valproic acid, which is used in the treatment of epilepsy. The valproic acid promoted the transplanted NSCs to generate nerve cells, rather than other brain cell types, and the combination therapy resulted in impressive restoration of hind limb function. The authors hope that this approach, whereby the fate of transplanted NSCs is manipulated, for example by administration of valproic acid, could be developed as an effective treatment for severe spinal cord injury.
 
In an accompanying commentary, Tamir Ben-Hur, at Hadassah Hebrew University Medical School, Israel, highlights the impressive functional recovery attained using this approach but cautions that further work is needed before it can be determined whether this approach will work in human patients.
 
###
 
TITLE: Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury
 
AUTHOR CONTACT: Kinichi Nakashima Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan. Phone: 81.743.72.5471; Fax: 81.743.72.5479; Email: kin@bs.naist.jp.
 
Public release date: 8-Aug-2010 [ Print | E-mail | Share ] [ Close Window ]
Contact: Tom Vasich tmvasich@uci.edu 949-824-6455 University of California - Irvine
 

3


Des injections de Cellules souches de la moelle osseuse promettent de traiter les blessures de lamoelle épinière dimanche,

 Le 15 mars 2009 

L'injection de cellules souches tirées de moelle osseuse propre du patient directement dans la colonne vertébrale utilisant des itinéraires multiples peuvent être un traitement efficace pour la blessure de moelle épinière (SCI) qui rend une certaine qualité de la vie pour des patients SCI sans événements défavorables sérieux, selon une nouvelle étude clinique conduite à l'Equateur.
            Les chercheurs de DaVinci Biosciences (Mesa Costa, la Californie), en collaboration avec l'Hôpital Luis Vernaza à l'Equateur, ont fait un rapport sur huit patients avec lésions médullaires (quatre aigus et quatre chroniques) à qui ils ont administré des cellules souches autologues BMCs directement dans la colonne vertébrale, le canal spinal et par intraveineuses pour chaque patient et ont suivi pendant deux ans utilisant des images IRM pour évaluer des changements morphologiques de la moelle épinière.
            "Notre objectif dans cette étude était de démontrer que l'administration par voies multiples de BMCS pour les lésions médullaires est sûre et faisable," a dit l'auteur correspondant docteur Francisco Silva. "Jusqu'à présent, nous avons administré les BMCS sur 52 patients avec lésions médullaires et n'avons eu aucune formation de tumeur, aucun cas d'infection ou d'augmentation de la douleur et peu de cas d'événements défavorables mineurs. Nous avons aussi trouvé une qualité de vie pour les patients améliorée."
            De plus, docteur Silva a rapporté des nouvelles de ses recherches sur les cellules souches, les avantages du  traitement plus grand que des justes améliorations de la qualité de la vie.
            "Le traitement peut réparer la moelle épinière endommagée comme le montre l' IRM  (l'imagerie par résonance magnétique) et les manifestations physiques après l'administration de cellules souches," a-t-il dit. "L'IRM démontre clairement des changements morphologiques se produisant dans la moelle épinière."
            Il n'y a aucun remède ou de traitements éfficacent pour les blessures de moelle épinière, un désordre affectant des millions de personnes dans le monde.
            La principale perte des tissus dans  blessure et la complexité des types de cellules exigés pour le rétablissement fonctionnel mènent à  une liste de considérations.
            Encore une fois, pour être considéré réussi, n'importe quel traitement devrait en fin de compte aider à améliorer la qualité de la vie des patients et démontrer des améliorations fonctionnelles.
            "La transplantation des cellules souches autologues BMCS peut promouvoir la croissance de vaisseaux sanguins et, donc, représenter une thérapie alternative," Silva a dit.
            D'après le principal trauma principal sur la moelle épinière adulte il y a la preuve que l'hémorragie et le flux sanguin sont atténués, dit-il.
            La rupture du flux sanguin mène à la destruction de la moelle épinière, la rupture de la barrière sanguine dans la moelle épinière qui se gonfle et libère des molécules influençant la perfusion dans la moelle épinière et l'ischémie, une restriction dans la provision de sang.
            Les huit patients qui ont été traités avec la greffe de BMC dans l'étude ont été suivis pendant deux ans. Ont été inclus quatre patients avec blessures premières ou aiguës (5 jours à blessure de poste de 7 mois) et quatre patients à très long terme ou à l'état chronique (blessure de poste de 5 à 21 années), selon docteur Silva.
            Tous les patients étaient paraplégiques et avaient subi des types différents de blessures, y compris une blessure de coup de feu.
            Docteur Silva a dit que l'administration de cellules souches a amélioré la mobilité des patients, la sensation et la fonction de la vessie menant à l'amélioration substantielle de la qualité de la vie.
            Les publications sur la qualité de vie qui ont été mesurés avec l'indice de Barthel et se sont aussi améliorées (c'est-à-dire, la toilette, les soins, l'habillement, le transfert, la mobilité, l'intestin, la vessie, etc.).
             "Les BMCs sont bien connues pour leur capacité à cultiver des vaisseaux sanguins," a dit docteur Silva. "Cet angiogénèse est nécessaire pour la cicatrisation et pour l'établissement d'une croissance dans un environnement permissif. Nous avons formulé une hypothèse que l'amélioration du flux sanguin et l'approvisionnement d'oxygène pourrait contribuer aux améliorations fonctionnelles pour les lésions médullaires transplantées avec des cellules souches autologues BMCs."
            Pour la première fois un patient victime de coup de feu à la moelle a reçu des greffes de BMC par des voies multiples.
            "Il est important de noter," a dit Silva, "que tous nos patients avec des blessures aiguës se sont améliorées significativement sans signes de détérioration ou présumé d'un rétablissement spontané."
            Selon docteur Svitlana Garbuzova-Davis, un chercheur sur la moelle épinière à l'Université du Sud de la Floride, l'étude met en évidence la valeur d'utiliser plusieurs voies d'administrations différentes simultanées pour l'administration de cellules souches, aussi bien que l'avantage des cellules eux-mêmes.
            "Tandis qu'il serait intéressant de connaître la contribution respective de chaque voie d'administration, cette étude semble vraiment soutenir le besoin de s'orienter vers des essais cliniques aveugles doubles de BMCS sur des lésions médullaires, particulièrement une voie non-envahissante peut être utilisé."



Bone Marrow Stem Cell Injections Show Promise To Treat Spinal Cord Injury
Sunday, March 15, 2009


 




Injecting a patient’s own bone marrow-derived stem cells directly into the spinal column using multiple routes can be an effective treatment for spinal cord injury (SCI) that returns some quality of life for SCI patients without serious adverse events, according to a new clinical study conducted in Ecuador.
            Researchers from DaVinci Biosciences (Costa Mesa, Calif.), in collaboration with Hospital Luis Vernaza in Ecuador, reported on eight patients with SCI (four acute and four chronic) to whom they administered autologous (patient’s own) BMCs directly into the spinal column, spinal canal and intravenously for each patient and followed for two years using MRI imaging to assess morphological changes in the spinal cord.
            “Our objective in this study was to demonstrate that multiple route administration of BMCs for SCI is safe and feasible,” said corresponding author Dr. Francisco Silva. “To date, we have administered BMCs into 52 patients with SCI and have had no tumor formations, no cases of infection or increased pain, and few instances of minor adverse events. We also found that patient quality of life improved.”
            In addition, Dr. Silva told Stem Cell Research News, the treatments offer benefits greater than just improvements in quality of life.
            “The treatment may repair the damaged spinal cord as seen through the MRI (magnetic resonance imaging) and the physical manifestations following the administration of stem cells,” he said. “The MRI clearly demonstrates morphological changes occurring within the spinal cord.”
            There is no cure or effective treatment for spinal cord injury, a disorder affecting millions globally.
            Tissue loss from the primary injury and the complexity of cell Types required for functional recovery lead the list of considerations.
            Once more, to be considered successful, any treatment should ultimately help to improve patient quality of life and demonstrate functional improvements.
            “Autologous stem cell transplantation of BMCs can promote the growth of blood vessels and, therefore, represent an alternative therapy,” Silva said.
            Following primary trauma to the adult spinal cord there is evidence of hemorrhage and blood flow is attenuated, he said.
            The disruption of blood flow leads to spinal cord infarction, the disruption of the blood-spinal cord injury barrier, swelling and the release of molecules influencing spinal cord perfusion and ischemia, a restriction in blood supply.
            The eight patients treated with BMC transplant in the study were followed for two years. They included four in early or acute stage (5 days to 7 months post injury) and four in longer term or chronic stage (5 to 21 years post injury), according to Dr. Silva.
            All of the patients were paraplegic, and had suffered different types of injuries, including a gunshot wound.
            Dr. Silva said the administration of stem cells improved the patients’ mobility, sensation, and bladder function leading to substantial improvement in quality of life
            Quality of life issues that pertained to the Barthel index also improved (i.e., bathing,  grooming, dressing, transfer, mobility, bowel, bladder, etc.).
             “BMCs are well known for their ability to grow blood vessels,” Dr. Silva said. “This angiogenesis is necessary for wound healing and establishing a growth permissive environment. We hypothesized that improved blood flow and oxygen supply could contribute to functional improvements for SCI transplanted with autologous BMCs.”
            The patient with the gunshot wound marked the first time a spinal gunshot victim had received BMC transplants through multiple routes.
            “It is important to note,” Silva said, “that all of our patients with acute injuries improved significantly with no signs of deterioration or impediment of presumed spontaneous recovery.”
            According to Dr. Svitlana Garbuzova-Davis, a spinal cord researcher at the University of South Florida, the study highlights the value of using several different simultaneous routes for the administration of stem cells, as well as the benefit of the cells themselves.
            “While it would be interesting to know the respective contribution of each route of administration, this study does appear to support the need to move to carry out double blind clinical trials of BMCs in SCI, especially if a non-invasive route could be used.”
            The study was in published Cell Transplantation (Vol. 17 No.12).
           





4

Une étude trés proche de celle réalisée par l'IRME et les cellules souches medullaires...


Les cellules souches aident à renverser la paralysie dans une étude animale.


La transplantation de cellules souches ependymales de la paroi de la moelle épinière a changé complètement la paralysie associée aux blessures de moelle épinière dans des essais en laboratoire sur des animaux, cette nouvelle étude a été trouvée par des scientifiques en Espagne.

            Les découvertes ont montré que la population de ces cellules après une blessure de la moelle épinière était plusieurs fois plus grande que des cellules comparables à des sujets animaux sains.

            Les résultats peuvent ouvrir une nouvelle fenêtre pour des stratégies régénératrices sur la moelle épinière.

                        Les cellules transplantées ont été trouvées pour proliférer après une blessure de la moelle épinière et ont été recrutées d'un secteur blessé spécifique.

            Quand ces cellules ont été transplantées dans des animaux avec une blessure de moelle épinière, ils ont régénéré dix fois plus rapidement au moment du greffon dans le sujet que des cellules semblables tirées d'animaux de contrôle sains.

            La blessure de moelle épinière est une cause majeure de paralysie et le trauma associé détruit des nombreux types de cellules, y compris les neurones qui portent les messages entre le cerveau et le reste du corps.

            Dans beaucoup de blessures spinales, la corde n'est pas en réalité coupée et au moins certaines des cellules nerveuses portant le signal restent intactes.

            Cependant, les cellules nerveuses survivantes ne peuvent plus porter des messages parce que les oligodendrocytes, qui comprennent la gaine d'isolation de la moelle épinière, sont détruits.

            Le mécanisme régénérateur découvert a été activé quand une lésion s'est formé dans le secteur blessé.

            Après une lésion formée dans le sujet greffon, les cellules souches ont été trouvées pour avoir une capacité plus efficace de se différencier en oligodendrocytes et d'autres types cellulaires nécessaires pour reconstituer la fonction neuronale.

            Il n'y a aucune thérapie efficace pour changer complètement cette condition d'handicape pour les gens.

            Cependant, la présence de ces cellules souche dans les moelles épinières humaines adultes suggère que la cette cellule souche et ces mécanismes associés puissent être exploitée pour réparer des blessures de la moelle épinière humaine.

            Étant donné le sérieux social et des problèmes de santé présentés par des maladies et les accidents qui détruisent la fonction neuronale, il y a un intérêt toujours croissant dans pour déterminer si des cellules souches adultes pourraient être utilisées comme une base de thérapies régénératrices.

            "Le corps humain contient des outils pour réparer les moelles épinières endommagées. Notre travail démontre clairement que nous avons besoin de cellules souches tant adultes qu'embryonnaires pour comprendre notre corps et appliquer cette connaissance dans la médecine régénératrice," a dit Miodrag Stojkovic, un chercheur au "Prince Felipe d'Espagne et aussi le co-auteur de l'étude. "Il y a des mécanismes dans notre corps qui doit être étudié plus en détail puisqu' ils pourraient être mobilisés pour guérir des blessures de moelle épinière."


 

Stem Cells Help Reverse Paralysis In Animal Study

 
Transplantation of ependymal stem cells from the lining of the spinal cord reversed paralysis associated with spinal cord injuries in laboratory tests in animals, a new study by scientists in Spain has found.

            The findings showed that the population of these cells after spinal cord injury was many times greater than comparable cells from healthy animal subjects.

            The results may open a new window on spinal cord regenerative strategies.

            The transplanted cells were found to proliferate after spinal cord injury and were recruited by the specific injured area.
            When these cells were transplanted into animals with spinal cord injury, they regenerated ten times faster while in the transplant subject than similar cells derived from healthy control animals.

            Spinal cord injury is a major cause of paralysis, and the associated trauma destroys numerous cell types, including the neurons that carry messages between the brain and the rest of the body.

            In many spinal injuries, the cord is not actually severed, and at least some of the signal-carrying nerve cells remain intact.
            However, the surviving nerve cells may no longer carry messages because oligodendrocytes, which comprise the insulating sheath of the spinal cord, are lost.

            The regenerative mechanism discovered was activated when a lesion formed in the injured area.

            After a lesion formed in the transplant subject, the stem cells were found to have a more effective ability to differentiate into oligodendrocytes and other cell types needed to restore neuronal function.

            There are no effective therapies to reverse this disabling condition in humans.

            However, the presence of these stem cells in the adult human spinal cords suggests that stem cell-associated mechanisms might be exploited to repair human spinal cord injuries.

            Given the serious social and health problems presented by diseases and accidents that destroy neuronal function, there is an ever-increasing interest in determining whether adult stem cells might be utilized as a basis of regenerative therapies.

            “The human body contains the tools to repair damaged spinal cords. Our work clearly demonstrates that we need both adult and embryonic stem cells to understand our body and apply this knowledge in regenerative medicine,” said Miodrag Stojkovic, a researcher at Spain’s Prince Felipe Research Centre and co-author of the study. “There are mechanisms in our body which need to be studied in more detail since they could be mobilized to cure spinal cord injuries.”




5
Recherches fondamentales / ICORD Nouveau Centre de recherche.
« le: 07 décembre 2008 à 18:43:27 »
La coopération internationale de la recherche sur la moelle épinière se met en marche en franchissant une nouvelle étape avec la construction de ce nouveau centre de recherche de plusieurs dizaines de million d'euros.

Le "Blusson Spinal Cord Centre" regroupera 4OO rechercheurs et les différents Instituts Internationaux dont l IRME avec l'ICCP           ( International Compaign for Cures of Spinal cord  injury Paralysis) pour vaincre la paralysie.

Liens:

- ICCP :  -         http://www.campaignforcure.org/iccp/
- ICCORD :  -    http://www.icord.org/           (en construction)


6
Études précliniques / Arrowhead/Nanotope
« le: 03 décembre 2008 à 20:29:38 »
Arrowhead est un pôle d'investissement sur les nano-technologies dont la société Nanotope spécialisée dans le traitement des lésions médullaires fait partie.
Voici un communiqué du groupe Arrowhead qui prévoit de déposer un dossier à la FDA en 2009 pour préparer un éventuel essais clinique.
Si quelqu'un peut traduire:

                                                                                                                                    PRESS RELEASE November 12,2008
Dear Stockholders;

In 2005, Dr. Samuel Stupp, Director of Northwestern University’s Institute for Bionanotechnology in Medicine, and I co-founded Nanotope Inc., a regenerative medicine company. I strongly believed that medicine would be forever transformed if we could move beyond simply replacing failed body parts and shift the industry toward a less invasive method of regenerating damaged tissues. This would represent no less than a paradigm shift in healthcare, but, of course, identifying an opportunity is simple; the difficult challenge is to develop and scale an appropriate technology platform. Dr. Stupp had been working toward this vision and his work was well positioned to be the technology basis of a new regenerative medicine company.

Now in 2008, Nanotope is part of the Arrowhead family of companies and it has moved well beyond science and vision into productization and scale-up. Specifically, Nanotope has a spinal cord regeneration candidate that has been shown in multiple animal models to reverse paralysis associated with spinal cord injury (SCI). Nanotope and Arrowhead have both publicly presented very powerful video of formerly paralyzed animals walking after treatment. Nanotope also has a product candidate that has been shown to regenerate lost vasculature in animal models and is potentially applicable for treating Peripheral Artery Disease (PAD), a condition that is thought to afflict as many as 20% of Americans over the age of 70.

Nanotope has developed a technological platform that can be customized to regenerate specific tissues; including neuronal, vascular, bone, heart, and cartilage. These products are injectable compounds that work with surviving cells in and around the point of injury to initiate and support regeneration. Importantly, these are not stem cell based therapies. Rather, Nanotope’s proprietary compounds work without any introduced cells and once regeneration is complete, the compounds are safely broken down and removed by the body. We believe that Nanotope’s long-term value as a potentially transformational company is rooted in its ability to address many therapeutic markets via the flexibility of its core platform. However, a lack of focus can be an expensive and ultimately fatal mistake for a company, so Nanotope has built its platform by focusing on two primary products. These product candidates target spinal cord regeneration and treatment of PAD. Nanotope expects to file INDs with the FDA in 2009 to enable clinical work in these areas.

The humanitarian case for reversing paralysis associated with SCI is clear: curing paralysis would mean immeasurable improvement in quality of life for SCI victims. Less obvious are the economic impacts of SCI. Within the major pharmaceutical markets, over 700,000 individuals live with SCIs and there are over 34,000 new injuries each year. This is a significant target market, and it has been reported that SCIs cost the U.S. approximately $15 billion per year.

Nanotope, its partners, and contractors have conducted multiple animal trials for spinal cord regeneration in various models. In each, the spinal cord regeneration candidate has been injected directly into the cord within 48 hours after injury, a clinically relevant strategy. Upon injection, the liquid self assembles into a matrix of nanofibers, creating a bioactive gel that induces healing. It has been demonstrated in rodents that both motor and sensory neurons grow through the point of injury as a result of treatment.

Nanotope has also developed a compound that is capable of initiating the growth of new blood vessels. We believe this compound may be highly applicable for treatment of PAD, a condition that increases with advanced age and manifested by the loss of vasculature in the extremities. PAD is thought to be an under-diagnosed health problem: the prevalence of PAD has usually been cited as affecting 8 to 12 million people in the US, but new data suggest that total numbers could be as high as 20 million. The current product market for PAD is split with stents and angioplasty for the treatment of large artery stenoses, and oral medications for the improvement of blood flow through diseased microvasculature. However, to our knowledge, there are no FDA-approved treatments that enable the regeneration of lost microvasculature, and that is where Nanotope has focused its time and resources. Nanotope’s PAD candidate is injected directly into ischemic tissue, where it self assembles into a network of bioactive nanofibers. It has been demonstrated in multiple animal models that treatment promotes the regeneration of new blood vessels.

Nanotope’s product candidates are built on a single proprietary platform that is highly flexible. This platform is a class of molecules that exists as monomers in solution and self assemble into nanofibers upon injection into the body. The resulting matrix, or gel, of nanofibers provides three-dimensional scaffolding in which cells and tissues may grow. This allows for the injection of a liquid that becomes a gel-like solid scaffold in situ, potentially replacing invasive surgery with a simple injection. Importantly, a small region within each molecule enables the resulting scaffold to be bioactive, providing cues and direction to cells that are targeted for regeneration. This region is customizable, and the number of different cues that may be encoded is virtually limitless. It is this factor that allows Nanotope to (a) use the same core technology for regeneration of various tissues and (b) optimize regeneration within a single tissue. This technology provides a flexible and broad proprietary platform of “smart” material to elicit tissue regeneration and healing across diverse cell types.

While Nanotope is currently focusing on spinal cord regeneration and treatment of PAD, it also has a solid pipeline of follow-on products aimed at different tissues. Much of the work for later products has been done with Dr. Stupp and his colleagues. We believe this is an attractive way to focus Nanotope’s resources on nearer-term products while continuing progress in new areas. Ongoing studies with promising preliminary results include: treatment of stroke and Parkinsonian traits in rodent models; bone regeneration in rodent models; cartilage regeneration in rodent and higher mammal models; and heart attack treatments in rodent and higher mammal models.

As we have discussed in the past, Arrowhead’s model is to commercialize nanotechnology-enabled products via majority-owned subsidiaries. However, our subsidiaries need not start out as majority-owned, and Nanotope, Inc. is an excellent example of this. Earlier this year, Arrowhead invested $2mm into Nanotope and acquired the small equity position of a Nanotope shareholder. Together, these provided Arrowhead with a 23% stake in the Company, and we intend to increase our equity position over time with the goal of achieving majority-owned status. We believe it fits well into our portfolio of subsidiaries and that it is a potentially transformative company.

Sincerely,

Christopher Anzalone

7
Essai clinique à l'horizon !!!!!!

Lien : http://www.irme.org/fr/article.php3?id_article=267

Citer
(...) Dans un premier temps, ces équipes avaient démontré que des animaux transgéniques, qui ne pouvaient pas faire de cicatrice gliale, avaient leurs neurones qui repoussaient après un traumatisme.

Dans un deuxième temps, ils ont mis au point une méthode qui permet, grâce à des fragments d’ARN appelé ARN interférent, de détruire les ARNs à l’origine de deux protéines formant la cicatrice gliale. Ce sont des sortes de « missiles anti-missiles ».

Il a été démontré chez l’animal que ce traitement, appliqué dans les suites d’un traumatisme, permettait d’inhiber la cicatrice laissant ainsi les neurones repousser.

Ces équipes poursuivent actuellement les recherches afin de voir si ces méthodes pourraient également s’appliquer sur des lésions anciennes.

Quoiqu’il en soit, les résultats sont suffisamment scientifiquement étayés, valables et reproductibles pour permettre d’envisager l’étape de la mise au point de cette thérapeutique chez l’homme et donc de réaliser le premier essai clinique de thérapie génique dans ce domaine.

Si les résultats obtenus chez l’animal se confirmaient chez l’homme, cela constituerait un produit fantastique dans le domaine des traumatismes de la moelle épinière mais aussi dans le domaine des traumatismes crâniens et des accidents vasculaires cérébraux. (...)

Pages: [1]

Utilisateur

 
 
Bienvenue, Invité. Merci de vous connecter ou de vous inscrire.

Soutenez-nous

Recherche rapide


* Qui est en ligne

* Derniers Membres

Lavandula2
91j 8h 33m
chris26 chris26
84j 2h 18m
Arnaud Arnaud
83j 9h 36m
charlieboy charlieboy
66j 4h 26m
Gyzmo34 Gyzmo34
63j 9m

* Top membres

gilles gilles
5057 Messages
TDelrieu TDelrieu
4075 Messages
Breizhfenua Breizhfenua
1519 Messages
farid
1328 Messages
Lavandula2
1279 Messages
caro23 caro23
1269 Messages
terryfrogger terryfrogger
1232 Messages
SMF spam blocked by CleanTalk